Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is `sqrt(2)` `2sqrt(2)` `4sqrt(2)` `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` By `A.M ge G.M.`
`x^(4)+y^(4) ge 2x^(2)+y^(2)` and `2x^(2)y^(2)+z^(2) ge sqrt(8)xyz`
`implies (x^(4)+y^(4)+z^(2))/(xyz) ge sqrt(8)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbers x,y,z is (a) sqrt(2)(b)2sqrt(2)(cc)4sqrt(2)(d)8sqrt(2)

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

Find the least positive real number K such that for any positive real numbers x,y,z the following inequality holds x sqrt(y)+y sqrt(z)+z sqrt(x)<=K sqrt((x+y)(y+z)(z+x))

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

factorise 2x^(2)+y^(2)+8z^(2)-2sqrt(2)xy+4sqrt(2)yz-8xz

Assuming that x,y,z are positive real numbers,simplify each of the following: (sqrt(x))^(-(2)/(3))sqrt(y^(4))-:sqrt(xy^(-(1)/(2)))( ii) 243x^(10)y^(5)z^(10)5