Home
Class 12
MATHS
If a, b, c are the sides of triangle , t...

If `a`, `b`, `c` are the sides of triangle , then the least value of `(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a)` is

A

`1//3`

B

`1`

C

`3`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `c+a-b`, `b+c-a`,`a+b-c` are all positive
Using `A.M. ge G.M.`
`:.(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) ge [(abc)/((c+a-b)(a+b-c)(b+c-a))]^(1//3)`........`(i)`
Also , `a^(2) ge a^(2)-(b-c)^(2)`
`implies a^(2) ge (a+b-c)(a-b+c)`
Similarly `b^(2) ge (b+c-a)(b-c+a)`
`c^(2) ge (c+a-b)(c-a+b)`
`:.a^(2)b^(2)c^(2) ge (a+b-c)^(2)(b+c-a)^(2)(c+a-b)^(2)`
Thus `abc ge (a+b-c)(b+c-a)(c+a-b)`
`implies (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1`
Hence, from `(i) (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are the sides of a triangle,then the minimum value of (a)/(b+c-a)+(b)/(c+a-b)+(c)/(a+b-c) is equal to (a)3(b)6(c)9(d)12

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1

If a,b,c are the sides of triangle then (a)/(c +a -b) + (b)/(a +b -c) + (c )/(b +c-a) can take vlaue (s)

If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____

If a,b,c are the sides of a triangle then (a)/(b+c-1)+(b)/(c+a-b)+(c)/(a+b-c)=

If a,b,c are the sides of a triangle and s=(a+b+c)/(2), then prove that 8(s-a)(s-b)(s-c)<=abc

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If a,b,c are sides of an equilateral triangle, the value of |[a,b,c],[b,c,a],[c,a,b]| is

If a, b, c are the sides of a triangle ABC and |(1,a,b),(1,c,a),(1,b,c)|=0, then the value of cos^2 A + cos^2 B +cos^2 C is equal to

If a,b,c are positive real numbers and sides of a triangle,then prove that (a+b+c)^(3)>=27(a+b-c)(b+c-a)(c+a-b)