Home
Class 12
MATHS
If a,b,x,y are real number and x,y gt 0,...

If `a,b,x,y` are real number and `x,y gt 0`, then `(a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y)` so on solving it we have `(ay-bx)^(2) ge 0`.
Similarly, we can extend the inequality to three pairs of numbers, i.e,
`(a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z)`
Now use this result to solve the following questions.
If `abc=1` , then the minimum value of
`(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))` is

A

`3`

B

`3//2`

C

`6`

D

`9`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
`=(1//a^(2))/(ab+ac)+(1//b^(2))/(ab+bc)+(1//c^(2))/(ac+bc)`
`ge (((1)/(a)+(1)/(b)+(1)/(c ))^(2))/(2(ab+bc+ac))` ……….`(i)`
Now `((1)/(a)+(1)/(b)+(1)/(c ))^(2)=((ab+bc+ac)^(2))/((abc)^(2))`
`=(ab+bc+ac)^(2)` (as `abc=1`)
`:.` From `(i)`, `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
` ge((ab+bc+ac))/(2)`
`ge(3*3sqrt((abc)^(2)))/(2)` (using `A.M. ge G.M.`)
`ge (3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.1|8 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If a,b,x,y are real number and x,y gt 0 , then (a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y) so on solving it we have (ay-bx)^(2) ge 0 . Similarly, we can extend the inequality to three pairs of numbers, i.e, (a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z) Now use this result to solve the following questions. The value of (a^(2)+b^(2))/(a+b)+(b^(2)+c^(2))/(b+c)+(a^(2)+c^(2))/(a+c) is

Solve the followings : If x^a = y^b = z^c and y^2 = zx then the value of 1/a + 1/c is :

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

Represent the following inequations on number lines. (a) x le 3 (b) y ge -2 (c) z lt -3

Represent the following inequations on number line (a) x le 3 (b) y ge -1 (c) z lt -4

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then the value of (x+y+z) is :

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

For the system for linear inequations x + y le 6, 3x + 5y ge 15, x ge 0, y ge 0, If Z = 3x + 2y, then the maximum value of Z occurs at :