Home
Class 12
MATHS
The value of the determinant |{:(cos(the...

The value of the determinant `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|` is

A

independent of `theta` for all `lambda in R`

B

independent of `theta` and `alpha` when `lambda=1`

C

independent of `theta` and `alpha` when `lambda=-1`

D

independent of `lambda` for all `theta`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`(a,c)` `|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}|`
`=(1)/(sinalphacosalpha)|{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Multiplying `R_(2)` and `R_(3)` by `sin alpha ` and `cos alpha`, respectively]
`=(1)/(sinalphacosalpha)xx|{:(0,0,cos2alpha+sin^(2)alpha+lambdacos^(2)alpha),(sinthetasinalpha,costhetasinalpha,sin^(2)alpha),(-costhetacosalpha,sinthetacosalpha,lambdacos^(2)alpha):}|`
[Applying `R_(1)toR_(1)+R_(2)+R_(3)`]
`=(cos2alpha+sin^(2)alpha+lambdacos^(2)alpha)/(sinalpha*cosalpha)|{:(sinthetasinalpha,costhetasinalpha),(-costhetacosalpha,sintheta cosalpha):}|`
`=(cos^(2)alpha+lambdacos^(2)alpha)|{:(sintheta,costheta),(-costheta,sintheta):}|=(1+lambda)cos^(2)alpha`
Therefore, the given determinants is independent of `theta` for all real values of `lambda`.
Also , `lambda=-1`, then it is independent of `theta` and `alpha`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Single correct Answer|42 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise Question Bank|23 Videos

Similar Questions

Explore conceptually related problems

The determinant |(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)| is

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Evaluate the determinates abs([-costheta,-sin theta],[sintheta,-costheta])

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|