Home
Class 12
MATHS
If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:...

If `A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):})`, then `A=`

A

`({:(1,0,0),(0,1,0),(0,0,-2):})`

B

`({:(0,1,0),(1,0,0),(0,0,1):})`

C

`({:(1,0,0),(1,0,0),(0,0,-2):})`

D

`({:(0,1,0),(1,0,0),(0,0,-2):})`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( A \cdot \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 4 \\ -1 & 3 & -8 \\ 5 & 4 & 6 \end{pmatrix} \), we need to find the matrix \( A \). ### Step-by-Step Solution: 1. **Write down the equation**: \[ A \cdot B = C \] where \[ B = \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} \] and \[ C = \begin{pmatrix} 3 & 1 & 4 \\ -1 & 3 & -8 \\ 5 & 4 & 6 \end{pmatrix} \] 2. **Identify the dimensions**: Matrix \( A \) must be a \( 3 \times 3 \) matrix since \( B \) is \( 3 \times 3 \) and \( C \) is \( 3 \times 3 \). 3. **Assume a general form for \( A \)**: Let \[ A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] 4. **Multiply \( A \) and \( B \)**: The product \( A \cdot B \) is calculated as follows: \[ A \cdot B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} \] This results in: \[ = \begin{pmatrix} a(1) + b(3) + c(-2) & a(3) + b(-1) + c(4) & a(4) + b(5) + c(-3) \\ d(1) + e(3) + f(-2) & d(3) + e(-1) + f(4) & d(4) + e(5) + f(-3) \\ g(1) + h(3) + i(-2) & g(3) + h(-1) + i(4) & g(4) + h(5) + i(-3) \end{pmatrix} \] 5. **Set the equations equal to the corresponding elements of matrix \( C \)**: From the first row: \[ a + 3b - 2c = 3 \quad (1) \] \[ 3a - b + 4c = 1 \quad (2) \] \[ 4a + 5b - 3c = 4 \quad (3) \] From the second row: \[ d + 3e - 2f = -1 \quad (4) \] \[ 3d - e + 4f = 3 \quad (5) \] \[ 4d + 5e - 3f = -8 \quad (6) \] From the third row: \[ g + 3h - 2i = 5 \quad (7) \] \[ 3g - h + 4i = 4 \quad (8) \] \[ 4g + 5h - 3i = 6 \quad (9) \] 6. **Solve the system of equations**: We will solve equations (1), (2), and (3) for \( a, b, c \) and equations (4), (5), and (6) for \( d, e, f \) and equations (7), (8), and (9) for \( g, h, i \). After solving these equations, we find: \[ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -2 & -2 \end{pmatrix} \] ### Final Result: Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -2 & -2 \end{pmatrix} \]

To solve the equation \( A \cdot \begin{pmatrix} 1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 4 \\ -1 & 3 & -8 \\ 5 & 4 & 6 \end{pmatrix} \), we need to find the matrix \( A \). ### Step-by-Step Solution: 1. **Write down the equation**: \[ A \cdot B = C \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Determine the matrix A, when A=4[{:(1,2,3),(-1,-2,-3),(4,2,6):}]+2[{:(5,4,1),(3,2,4),(3,8,2):}]

There are three relations R_(1) , R_(2) and R_(3) such that R_(1) = {(2,1),(3,1),(4,2)} , R_(2) = {(2,2),(2,4),(3,3),(4,4)} and R_(3) = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} then

The order of the matrices [{:(1,2,3),(4,5,-1):}], [{:(2,4),(9,2),(6,3),(4,1):}] , [{:(4,5,6),(3,2,1),(9,8,7):}] respectively are :

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range: (i) {(2,1), (3,1),(4,2)} (ii) {(2,2),(2,4),(3,3),(4,4)} (iii) {(2,1),(5,1),(8,1),(11,2),(14,2),(17,2)} (iv) {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)} (v){(2,1),(4,2),(6,3),(8,4),(10,5)} (vi) {(1,2),(2,3),(3,4),(3,5),(3,7),(4,8)}

If A={1,2,3},B={3,4}and C={4,5,6}, "then prove that" (AxxB)uu(AxxC) ={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5 ),(2,6),(3,3),(3,4),(3,5),(3,6)}

For teaching the concept of probability, Mrs. Verma decided to use two dice. Shet took a pair of die and write all the possible outcomes on the blackboard. All possible outcomes wave: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) The probability that 4 will not come up on either of them is

For teaching the concept of probability, Mrs. Verma decided to use two dice. Shet took a pair of die and write all the possible outcomes on the blackboard. All possible outcomes wave: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) The probability that 5 will come up at least once is:

For teaching the concept of probability, Mrs. Verma decided to use two dice. Shet took a pair of die and write all the possible outcomes on the blackboard. All possible outcomes wave: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6) (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) The probability that 6 will come up on both dice is

CENGAGE-MATRICES-Single correct Answer
  1. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  2. If matrix A=[a(ij)](3xx3), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0...

    Text Solution

    |

  3. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  4. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(1):}]. If AB ...

    Text Solution

    |

  5. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  6. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  7. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  8. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  9. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  10. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  11. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  12. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  13. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  14. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  15. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  16. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  17. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  18. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  19. A and B be 3xx3 matrices such that AB+A=0, then

    Text Solution

    |

  20. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |