Home
Class 12
MATHS
|A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, ...

`|A-B| ne 0`, `A^(4)=B^(4)`, `C^(3)A=C^(3)B`, `B^(3)A=A^(3)B`, then `|A^(3)+B^(3)+C^(3)|=`

A

`0`

B

`1`

C

`3|A|^(3)`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the required determinant. ### Step 1: Understand the Given Conditions We are given: 1. \(|A - B| \neq 0\) (the determinant of \(A - B\) is not equal to zero) 2. \(A^4 = B^4\) 3. \(C^3 A = C^3 B\) 4. \(B^3 A = A^3 B\) ### Step 2: Use the Identity for Cubes We know the identity for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Thus, we can express \(A^3 + B^3 + C^3\) as: \[ A^3 + B^3 + C^3 = (A + B)(A^2 - AB + B^2) + C^3 \] ### Step 3: Factor Out \(A - B\) We can also use the identity for the difference of cubes: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) \] This means we can express \(A^3 + B^3\) using \(A - B\): \[ A^3 + B^3 = (A - B)(A^2 + AB + B^2) + 2B^3 \] ### Step 4: Combine the Terms Now, we can write: \[ A^3 + B^3 + C^3 = (A - B)(A^2 + AB + B^2) + C^3 \] ### Step 5: Apply the Given Conditions From the condition \(A^4 = B^4\), we can derive that: \[ A^4 - B^4 = (A^2 - B^2)(A^2 + B^2) = 0 \] This implies \(A^2 = B^2\) or \(A^2 + B^2 = 0\). Since \(|A - B| \neq 0\), we can conclude that \(A^2 = B^2\). ### Step 6: Evaluate the Determinant Now, we can evaluate the determinant: \[ |A^3 + B^3 + C^3| = |(A - B)(A^2 + AB + B^2) + C^3| \] Since \(|A - B| \neq 0\), we can conclude that the determinant of the entire expression must equal zero. ### Final Result Thus, we have: \[ |A^3 + B^3 + C^3| = 0 \]

To solve the problem step by step, we will analyze the given conditions and derive the required determinant. ### Step 1: Understand the Given Conditions We are given: 1. \(|A - B| \neq 0\) (the determinant of \(A - B\) is not equal to zero) 2. \(A^4 = B^4\) 3. \(C^3 A = C^3 B\) 4. \(B^3 A = A^3 B\) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

The HCF of the polynomials 12a^(3) b^(4) c^(2), 18a^(4) b^(3) c^(3) and 24a^(6) b^(2) c^(4) is ____

If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

If (3a + 4b)/(3c + 4d) = (3a-4b)/(3c-4d) , then

CENGAGE-MATRICES-Single correct Answer
  1. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  2. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  3. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  4. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  5. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  6. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  7. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  8. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  9. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  10. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  11. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  12. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  13. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  14. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  15. A and B be 3xx3 matrices such that AB+A=0, then

    Text Solution

    |

  16. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  18. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  19. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  20. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |