Home
Class 12
MATHS
If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , ...

If `(A+B)^(2)=A^(2)+B^(2)` and `|A| ne 0` , then `|B|=` (where `A` and `B` are matrices of odd order)

A

`2`

B

`-2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given and derive the determinant of matrix \( B \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ (A + B)^2 = A^2 + B^2 \] 2. **Expand the left-hand side:** \[ (A + B)(A + B) = A^2 + AB + BA + B^2 \] Thus, we can rewrite the equation as: \[ A^2 + AB + BA + B^2 = A^2 + B^2 \] 3. **Cancel \( A^2 \) and \( B^2 \) from both sides:** \[ AB + BA = 0 \] 4. **Rearrange the equation:** \[ AB = -BA \] 5. **Take the determinant of both sides:** \[ |AB| = |-BA| \] 6. **Use the property of determinants:** \[ |AB| = |A||B| \quad \text{and} \quad |-BA| = (-1)^n |B||A| \] Here, \( n \) is the order of the matrices, which is odd. 7. **Substituting the properties into the equation:** \[ |A||B| = (-1)^n |B||A| \] 8. **Since \( n \) is odd, \( (-1)^n = -1 \):** \[ |A||B| = -|B||A| \] 9. **Rearranging gives:** \[ |A||B| + |B||A| = 0 \] This simplifies to: \[ |B|(|A| + |A|) = 0 \] or \[ |B| \cdot 2|A| = 0 \] 10. **Since \( |A| \neq 0 \) (given in the problem), we can conclude:** \[ |B| = 0 \] ### Final Answer: \[ |B| = 0 \]

To solve the problem, we need to analyze the equation given and derive the determinant of matrix \( B \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ (A + B)^2 = A^2 + B^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If AneB, AB = BA and A^(2)=B^(2) , then the value of the determinant of matrix A+B is (where A and B are square matrices of order 3xx3 )

If A and B are square matrices of order 2, then (A+B)^(2)=

If A andB are square matrices of order 2, then (A+B)^(2) =

If A and B are square matrics of the same order then (A+B)^2=?

If A and B are square matrics of the same order then (A-B)^2=?

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

If A and B are square matrices of order ntimesn , then (A-B)^(2)=

If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I and det. (AB-A-2B+2I) ne 0 , then identify the correct statement(s), where I is idensity matrix of order 3.

CENGAGE-MATRICES-Single correct Answer
  1. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  2. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  3. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  4. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  5. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  6. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  7. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  8. A and B be 3xx3 matrices such that AB+A=0, then

    Text Solution

    |

  9. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  11. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  13. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  14. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  15. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  16. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  17. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  18. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying (I-0.4A)^(-1)=I-alphaA where I...

    Text Solution

    |

  20. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |