Home
Class 12
MATHS
If the elements of a matrix A are real p...

If the elements of a matrix `A` are real positive and distinct such that `det(A+A^(T))^(T)=0` then

A

`detA gt 0`

B

`det A ge 0`

C

`det (A-A^(T)) gt 0`

D

`det (A.A^(T)) gt 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`(a,c,d)` `A=({:(a,b),(c,d):})` `a ne b ne c ne d gt 0`
`A+A^(T)=({:(2a,b+c),(b+c,2d):})`
`|A+A^(T)|=4ad-(b+c)^(2)=0impliesb+c=2sqrt(ad)`
`impliesb+c=2sqrt(ad) gt2sqrt(bc)` `(A.M gt G.M)`
`impliesad gt bc`
`impliesad-bc gt 0` (as `a ne b ne c ne d gt 0`)
`impliesdetA gt0`
`|A-A^(T)|=|{:((0,b-c),(c-b,0)):}|=0+(b-c)^(2) gt 0`
`|A A^(T)|=|A||A^(T)|=|A|^(2)=(det A)^(2) gt 0`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A is a 3xx3 matrix such that det.A=0, then

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

If a square matrix A is such that "AA"^(T)=l=A^(T)A , then |A| is equal to

If x is a non singular matrix and y is a square matrix,such that det(x^(-1)yx)=K det y ,then find K

Let A be a square matreix of order n then det(A)=det(A^(T))

Let A, B, C be nxxn real matrices that are pairwise commutative and ABC is a null matrix. Show that det(A + B + C) det (A^3+ B^3 + C^3) geq0,

If A is a matrix and k is a scalar; then (kA)^(T)=k(A^(T))