Home
Class 12
MATHS
Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2)...

Let matrix `A=[{:(x,y,-z),(1,2,3),(1,1,2):}]` , where `x,y,z in N`. If `|adj(adj(adj(adjA)))|=4^(8)*5^(16)`, then the number of such `(x,y,z)` are

A

`28`

B

`36`

C

`45`

D

`55`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x, y, z \) in the matrix \( A = \begin{pmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \) such that \( |adj(adj(adj(adj A)))| = 4^8 \cdot 5^{16} \). ### Step-by-Step Solution: 1. **Understanding the Determinant of the Adjoint**: The determinant of the adjoint of a matrix \( A \) is given by the formula: \[ |adj(A)| = |A|^{n-1} \] where \( n \) is the order of the matrix. Here, \( A \) is a \( 3 \times 3 \) matrix, so \( n = 3 \). 2. **Finding the Determinant of the Adjoint**: Therefore, the determinant of the adjoint of \( A \) is: \[ |adj(A)| = |A|^{2} \] For the adjoint of the adjoint: \[ |adj(adj(A))| = |A|^{2} \cdot |A|^{2} = |A|^{4} \] Continuing this process: \[ |adj(adj(adj(A)))| = |A|^{8} \] \[ |adj(adj(adj(adj(A))))| = |A|^{16} \] 3. **Setting Up the Equation**: We know from the problem statement that: \[ |adj(adj(adj(adj A)))| = 4^8 \cdot 5^{16} \] Thus, we have: \[ |A|^{16} = 4^8 \cdot 5^{16} \] 4. **Finding the Determinant of A**: Taking the 16th root on both sides gives: \[ |A| = (4^8 \cdot 5^{16})^{1/16} = 4^{1/2} \cdot 5 = 2 \cdot 5 = 10 \] 5. **Calculating the Determinant of A**: Now we need to calculate the determinant of the matrix \( A \): \[ |A| = \begin{vmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ |A| = x \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - y \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} - z \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \] 6. **Calculating the Minors**: The minors are calculated as follows: \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2) - (3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = (1 \cdot 2) - (3 \cdot 1) = 2 - 3 = -1 \] \[ \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = (1 \cdot 1) - (2 \cdot 1) = 1 - 2 = -1 \] 7. **Substituting Back**: Thus, we have: \[ |A| = x \cdot 1 - y \cdot (-1) - z \cdot (-1) = x + y + z \] Setting this equal to 10: \[ x + y + z = 10 \] 8. **Finding Natural Number Solutions**: Since \( x, y, z \) are natural numbers (i.e., positive integers), we can use the stars and bars combinatorial method to find the number of solutions. The number of solutions to \( x + y + z = 10 \) in natural numbers is given by: \[ \text{Number of solutions} = \binom{10 - 1}{3 - 1} = \binom{9}{2} = \frac{9 \cdot 8}{2 \cdot 1} = 36 \] ### Final Answer: The number of such \( (x, y, z) \) is **36**.

To solve the problem, we need to find the values of \( x, y, z \) in the matrix \( A = \begin{pmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \) such that \( |adj(adj(adj(adj A)))| = 4^8 \cdot 5^{16} \). ### Step-by-Step Solution: 1. **Understanding the Determinant of the Adjoint**: The determinant of the adjoint of a matrix \( A \) is given by the formula: \[ |adj(A)| = |A|^{n-1} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] where x,y, z in N . If det. (adj. (adj. A)) =2^(8)*3^(4) then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.]

Let matrix A=[[x,y,-z1,2,31,1,2]] where x,y,z varepsilon N. If det.,(adj(adj.A))=2^(8)*(3^(4)) then the number of such matrices A is :

A, B and C are three square matrices of order 3 such that A= diag. (x, y, x), det. (B)=4 and det. (C)=2 , where x, y, z in I^(+) . If det. (adj. (adj. (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

If A=[{:(3,1),(2,-3):}] , then find |adj.A| .

A is a 3times3 matrix and |A|=2 then |adj(adj(adjA))| =

CENGAGE-MATRICES-Single correct Answer
  1. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  2. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  3. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  4. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  5. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  6. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  7. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  8. A and B be 3xx3 matrices such that AB+A=0, then

    Text Solution

    |

  9. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  11. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  12. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  13. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  14. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  15. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  16. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix A...

    Text Solution

    |

  17. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  18. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  19. If A is an idempotent matrix satisfying (I-0.4A)^(-1)=I-alphaA where I...

    Text Solution

    |

  20. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |