Home
Class 9
MATHS
A(x)={:[(0,0,x),(0,0,0)]:} then find the...

`A_(x)={:[(0,0,x),(0,0,0)]:}` then find the maximum number of possibilities of matrix `B_(x)`, in which x can be placed in `a_(11),a_(21),or a_(31)`, position such `A_(x)B_(x)=O_(2xx1)`.

A

1

B

2

C

3

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
C

Check for the possibilities of `B_(x)` such that `A_(x)B_(x)=O`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 2|20 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type Questions|5 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3 MCQ|15 Videos
  • NUMBER SYSTEMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos

Similar Questions

Explore conceptually related problems

find all the possible triplets (a_(1), a_(2), a_(3)) such that a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0 for all real x.

The number of all the possible triplets (a_(1),a_(2),a_(3)) such that a_(1)+a_(2)cos(2x)+a_(2)sin^(2)(x)=0 for all x is 0 (b) 1(c)3(d) infinite

In the matrix A=[{:(a,1,x),(2,sqrt(3),x^(2)-y) ,(0,5,(-2)/(5)):}] write (i) the order of the matrix A. (ii) the number of elements. (iii) elements a_(23) ,a_(31) and a_(1) ,

Let A be a square matrix of 2x2 satisfyinga.a_(ij)=1 or -1 and a_(11)*a_(21)+a_(12)*a_(22)=0 then the no.of matrix

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

If e^(e^(x)) = a_(0) +a_(1)x +a_(2)x^(2)+... ,then find the value of a_ (0)

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

If a_(0), a_(1), a(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

(1+x^(2)+x^(3))^(40)=a_(0)+a_(1)x+a_(2)x^(2)...+a_(120)x^(120), then number of values of r for which a_(r)=0, is equal to-

PEARSON IIT JEE FOUNDATION-MATRICES-CONCEPT APPLICATION LEVEL 1
  1. If A and B are commute then (A+B)^(2) =

    Text Solution

    |

  2. If A={:[(2,-3,1)]:}andB={:[(4),(2),(-2)]:}, then find 2A^(T)+B

    Text Solution

    |

  3. If {:[(p),(q),(r)]:}andB={:[(3,4,5)]:}, then AB is

    Text Solution

    |

  4. If the orders of matrices A^(T),BandC^(T)" are "3xx4,2xx3and1xx2 respe...

    Text Solution

    |

  5. A is a 2xx2 matrix, such that A={:[(a(ij))]:}, where a(ij)=2i-j+1. The...

    Text Solution

    |

  6. If A+B={:[(01,-11),(9,7)]:}andA-B={:[(-8,9),(9,-5)]:}, then B=

    Text Solution

    |

  7. If A={:((-2,-1),(-5,-3)):}B={:((-3,1),(5,-2)):}and(AB)^(n)=I then n is...

    Text Solution

    |

  8. If A={:((4,3),(-5,2)):}, then A^(2)-6A =

    Text Solution

    |

  9. If A={:((1,5),(3,6)):}and=((34)/(39)), then find the matrix X such tha...

    Text Solution

    |

  10. If {:((2,3),(p,1)):}{:((5,2),(-4,6)):}={:((-2,q),(16,r)):}, then 2p+r=

    Text Solution

    |

  11. If A={:((2,-2),(-2,2)):},B={:((5,3),(-7,2)):}and=C={:((4,2),(-8,1)):} ...

    Text Solution

    |

  12. A={:[(-5,-3,4),(3,2,-4)]:}andB={:[(-4,5,-2),(3,1,5)]:}, then find X s...

    Text Solution

    |

  13. If A+B={:[(7,6),(-3,2)]:}andA-B={:[(1,2),(3,6)]:}, then find A.

    Text Solution

    |

  14. If B-A^(T)={:[(3,4,-2),(5,-3,7)]:}andB^(T)+A={:[(2,0),(5,-1),(3,4)]:},...

    Text Solution

    |

  15. If 2A-3B={:((-27,4,5),(7,6,-15)):}and5A-2B={:((-40,-1,18),(12,15,-21))...

    Text Solution

    |

  16. If A={:[(-1,2),(3,4)]:}andB=A^(T)," then "A^(T)+B^(T)=

    Text Solution

    |

  17. A(x)={:[(0,0,x),(0,0,0)]:} then find the maximum number of possibiliti...

    Text Solution

    |

  18. If A-2B={:[(3,6),(7,6)]:}andA-3B={:[(2,6),(7,5)]:}, then the matrix A ...

    Text Solution

    |

  19. Which of the following matrices satisfies the equation A^(2)+A=O ?

    Text Solution

    |

  20. If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}...

    Text Solution

    |