Home
Class 7
MATHS
((a)/(b))^(x+y+z)div[(sqrt(a/b))^(-x)xx(...

`((a)/(b))^(x+y+z)div[(sqrt(a/b))^(-x)xx(sqrta/b)^(-y)xx(sqrt(a/b))^(-z)]=`________.

A

`[a^3//b^3]^(x+y+z) `

B

`[a^2//b^2]^(x+y+z)`

C

`[a//b]^(x+y+z)//2`

D

`[a//b]^3(x+y+z)//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\left(\frac{a}{b}\right)^{x+y+z}}{\left(\sqrt{\frac{a}{b}}\right)^{-x} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-y} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-z}}\), we will follow these steps: ### Step 1: Rewrite the square roots as powers The square root can be expressed as a power of \(\frac{1}{2}\): \[ \sqrt{\frac{a}{b}} = \left(\frac{a}{b}\right)^{\frac{1}{2}} \] Thus, we can rewrite the denominator: \[ \left(\sqrt{\frac{a}{b}}\right)^{-x} = \left(\frac{a}{b}\right)^{-\frac{x}{2}}, \quad \left(\sqrt{\frac{a}{b}}\right)^{-y} = \left(\frac{a}{b}\right)^{-\frac{y}{2}}, \quad \left(\sqrt{\frac{a}{b}}\right)^{-z} = \left(\frac{a}{b}\right)^{-\frac{z}{2}} \] ### Step 2: Combine the terms in the denominator Now, we can combine the terms in the denominator: \[ \left(\sqrt{\frac{a}{b}}\right)^{-x} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-y} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-z} = \left(\frac{a}{b}\right)^{-\frac{x}{2}} \cdot \left(\frac{a}{b}\right)^{-\frac{y}{2}} \cdot \left(\frac{a}{b}\right)^{-\frac{z}{2}} = \left(\frac{a}{b}\right)^{-\left(\frac{x+y+z}{2}\right)} \] ### Step 3: Rewrite the entire expression Now we can rewrite the entire expression: \[ \frac{\left(\frac{a}{b}\right)^{x+y+z}}{\left(\frac{a}{b}\right)^{-\left(\frac{x+y+z}{2}\right)}} \] ### Step 4: Apply the property of indices Using the property of indices \(\frac{a^m}{a^n} = a^{m-n}\), we can simplify: \[ \left(\frac{a}{b}\right)^{(x+y+z) - \left(-\frac{x+y+z}{2}\right)} = \left(\frac{a}{b}\right)^{(x+y+z) + \frac{x+y+z}{2}} \] ### Step 5: Combine the powers Now, we can combine the powers: \[ (x+y+z) + \frac{x+y+z}{2} = \frac{2(x+y+z)}{2} + \frac{x+y+z}{2} = \frac{3(x+y+z)}{2} \] ### Final Result Thus, the expression simplifies to: \[ \left(\frac{a}{b}\right)^{\frac{3(x+y+z)}{2}} \]

To solve the expression \(\frac{\left(\frac{a}{b}\right)^{x+y+z}}{\left(\sqrt{\frac{a}{b}}\right)^{-x} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-y} \cdot \left(\sqrt{\frac{a}{b}}\right)^{-z}}\), we will follow these steps: ### Step 1: Rewrite the square roots as powers The square root can be expressed as a power of \(\frac{1}{2}\): \[ \sqrt{\frac{a}{b}} = \left(\frac{a}{b}\right)^{\frac{1}{2}} \] Thus, we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -3|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Assessment test Test -1|11 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level-1|22 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

((a^x)/(a^y))^(z)xx((a^y)/(a^z))^(x)xx((a^z)/(a^x))^(y)=____(a ne 0 and a ne 1)

Value of y = sqrt((a^(y/x))/(a_(x/y))) xx sqrt((a_(x/z))/(a_(y/x))) xx sqrt((a_(x/y))/(a_(x/z))) is

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)((sqrt(a-x))/(sqrt(x-b))) then (dy)/(dx)=

The value of ((a^(x))/(a^(y)))^(x+y) xx ((a^(y))/(a^(z)))^(y+z) xx ((a^(z))/(a^(x)))^(z+x) is

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

If the number x,y,z are in H.P.,then (sqrt(yz))/(sqrt(y)+sqrt(z)),(sqrt(xz))/(sqrt(x)+sqrt(z)),(sqrt(x))/(sqrt(x)+sqrt(y)) are in

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

PEARSON IIT JEE FOUNDATION-INDICES -Level -2
  1. Find the value of (-(2)/(3))^2/(-(2)/(3))^3+((-(4)/(9)))/((2)/(3))^2

    Text Solution

    |

  2. If (4)^(a+5) (16) ^(2a)(32)^(4)=(16)^(3a)then a =

    Text Solution

    |

  3. If 2^(n)=4096 , then 2^(n-5) is

    Text Solution

    |

  4. If 2^(3y-x)=16 and 2^(2y+x)=2048, then the value of y is

    Text Solution

    |

  5. If x^yxxy^x=72 , then find the sum of x and y where x and y are positi...

    Text Solution

    |

  6. ((a^x)/(a^y))^(z)xx((a^y)/(a^z))^(x)xx((a^z)/(a^x))^(y)=(a ne 0 and a...

    Text Solution

    |

  7. Which is the greatest among (5)^23, (25)^(11), (625)^6, and (3125)^5?

    Text Solution

    |

  8. (0.01024)^((1)/(5))=

    Text Solution

    |

  9. ((a)/(b))^(x+y+z)div[(sqrt(a/b))^(-x)xx(sqrta/b)^(-y)xx(sqrt(a/b))^(-z...

    Text Solution

    |

  10. If (1)/(512)^(2x+2)=2^18, then find the value of x.

    Text Solution

    |

  11. If (2x)^5=100000 then find the value of x.

    Text Solution

    |

  12. If (x+y)^3=1331 and (x-y)^5=243, then find x^2-y^2.

    Text Solution

    |

  13. If 3^(2x-16)=4^(3x-24), then x=

    Text Solution

    |

  14. If xyz=0 , then find the value of (a^x)^(zy)+(a^y)^(zx)+(a^z)^(xy).

    Text Solution

    |

  15. Varun secured x marks in Maths and Rahul secured x^2 marks in Maths. T...

    Text Solution

    |

  16. What should be multiplied to 2^6 so that the products is 1 ?

    Text Solution

    |

  17. If 2^(7x-5)=(32)^(x-7), then find the value of (1)/(2^x)

    Text Solution

    |

  18. If x=sqrt(100), then find the value of (x^3+x^2)/(x)

    Text Solution

    |

  19. Which among 4^(-2),3^(-2),2^(-2) and 5^(-2) is the greatest?

    Text Solution

    |

  20. A teacher wanted to distribute 2025 chocolates equally among x number ...

    Text Solution

    |