Home
Class 11
MATHS
Find the lengths of transverse and conju...

Find the lengths of transverse and conjugate axes, co-ordinates of foci, vertices and the eccentricity for the following hyperbolas :
(i) `16x^(2) - 9y^(2) = 144`
(ii) `2x^(2) - 3y^(2) - 6 =0 `
(iii) `3x^(2) - 2y^(2) = 1 `

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given hyperbola equations step by step. ### (i) For the equation `16x² - 9y² = 144`: 1. **Convert to Standard Form**: \[ \frac{16x^2}{144} - \frac{9y^2}{144} = 1 \] Simplifying gives: \[ \frac{x^2}{9} - \frac{y^2}{16} = 1 \] 2. **Identify \(a^2\) and \(b^2\)**: From the standard form \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\), we have: \[ a^2 = 9 \quad \Rightarrow \quad a = 3 \] \[ b^2 = 16 \quad \Rightarrow \quad b = 4 \] 3. **Lengths of Transverse and Conjugate Axes**: - Length of Transverse Axis = \(2a = 2 \times 3 = 6\) - Length of Conjugate Axis = \(2b = 2 \times 4 = 8\) 4. **Coordinates of the Center**: The center is at \((0, 0)\). 5. **Coordinates of the Vertices**: Vertices are at \((\pm a, 0) = (\pm 3, 0)\). 6. **Eccentricity**: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3} \] 7. **Coordinates of the Foci**: \[ \text{Foci} = (\pm ae, 0) = \left(\pm 3 \cdot \frac{5}{3}, 0\right) = (\pm 5, 0) \] ### Summary for (i): - Length of Transverse Axis: 6 - Length of Conjugate Axis: 8 - Center: (0, 0) - Vertices: (3, 0) and (-3, 0) - Eccentricity: \(\frac{5}{3}\) - Foci: (5, 0) and (-5, 0) --- ### (ii) For the equation `2x² - 3y² - 6 = 0`: 1. **Convert to Standard Form**: \[ 2x^2 - 3y^2 = 6 \quad \Rightarrow \quad \frac{x^2}{3} - \frac{y^2}{2} = 1 \] 2. **Identify \(a^2\) and \(b^2\)**: \[ a^2 = 3 \quad \Rightarrow \quad a = \sqrt{3} \] \[ b^2 = 2 \quad \Rightarrow \quad b = \sqrt{2} \] 3. **Lengths of Transverse and Conjugate Axes**: - Length of Transverse Axis = \(2a = 2\sqrt{3}\) - Length of Conjugate Axis = \(2b = 2\sqrt{2}\) 4. **Coordinates of the Center**: The center is at \((0, 0)\). 5. **Coordinates of the Vertices**: Vertices are at \((\pm a, 0) = (\pm \sqrt{3}, 0)\). 6. **Eccentricity**: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{2}{3}} = \sqrt{\frac{5}{3}} \] 7. **Coordinates of the Foci**: \[ \text{Foci} = (\pm ae, 0) = \left(\pm \sqrt{3} \cdot \sqrt{\frac{5}{3}}, 0\right) = \left(\pm \sqrt{5}, 0\right) \] ### Summary for (ii): - Length of Transverse Axis: \(2\sqrt{3}\) - Length of Conjugate Axis: \(2\sqrt{2}\) - Center: (0, 0) - Vertices: \((\sqrt{3}, 0)\) and \((- \sqrt{3}, 0)\) - Eccentricity: \(\sqrt{\frac{5}{3}}\) - Foci: \((\sqrt{5}, 0)\) and \((- \sqrt{5}, 0)\) --- ### (iii) For the equation `3x² - 2y² = 1`: 1. **Convert to Standard Form**: \[ \frac{x^2}{\frac{1}{3}} - \frac{y^2}{\frac{1}{2}} = 1 \] 2. **Identify \(a^2\) and \(b^2\)**: \[ a^2 = \frac{1}{3} \quad \Rightarrow \quad a = \frac{1}{\sqrt{3}} \] \[ b^2 = \frac{1}{2} \quad \Rightarrow \quad b = \frac{1}{\sqrt{2}} \] 3. **Lengths of Transverse and Conjugate Axes**: - Length of Transverse Axis = \(2a = \frac{2}{\sqrt{3}}\) - Length of Conjugate Axis = \(2b = \frac{2}{\sqrt{2}}\) 4. **Coordinates of the Center**: The center is at \((0, 0)\). 5. **Coordinates of the Vertices**: Vertices are at \((\pm a, 0) = \left(\pm \frac{1}{\sqrt{3}}, 0\right)\). 6. **Eccentricity**: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{\frac{1}{2}}{\frac{1}{3}}} = \sqrt{1 + \frac{3}{2}} = \sqrt{\frac{5}{2}} \] 7. **Coordinates of the Foci**: \[ \text{Foci} = (\pm ae, 0) = \left(\pm \frac{1}{\sqrt{3}} \cdot \sqrt{\frac{5}{2}}, 0\right) = \left(\pm \frac{\sqrt{5}}{\sqrt{6}}, 0\right) \] ### Summary for (iii): - Length of Transverse Axis: \(\frac{2}{\sqrt{3}}\) - Length of Conjugate Axis: \(\frac{2}{\sqrt{2}}\) - Center: (0, 0) - Vertices: \(\left(\frac{1}{\sqrt{3}}, 0\right)\) and \(\left(-\frac{1}{\sqrt{3}}, 0\right)\) - Eccentricity: \(\sqrt{\frac{5}{2}}\) - Foci: \(\left(\frac{\sqrt{5}}{\sqrt{6}}, 0\right)\) and \(\left(-\frac{\sqrt{5}}{\sqrt{6}}, 0\right)\) ---
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (H) (LONG ANSWER TYPE QUESTIONS I )|6 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS )|35 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (G) (LONG ANSWER TYPE QUESTIONS I )|2 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the length of the transverse axis, conjugate axis, eccentricity, vertices, foci and directrices of the hyperbola 9x^2 - 16y^2 = 144 .

Find the lengths of the axes, the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola 9x^(2)-16y^(2)=144.

Find the lengths of the major and minor axes, coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the ellipse: 4x^(2)+9y^(2)=144.

Find the lengths of major and minor axes,the coordinate of foci, vertices and the eccentricity of the ellipse 3x^(2)+2y^(2)=6 . Also the equation of the directries.

Find the length of the transverse and conjugate axes, eccentricity, centre, foci and directrices of the hyperbola . 9x^2 - 16y^2 - 72x + 96y - 144 = 0

Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola 16x^(2)-9y^(2)=576

Find the length of the axes , the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola y^(2)-16x^(2)=16.