Home
Class 11
MATHS
Find the centre, eccentrcity, foci and d...

Find the centre, eccentrcity, foci and directrices of the hyperboal :
`9x^(2) - 16y^(2) + 18x + 32y - 151 = 0 `.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the center, eccentricity, foci, and directrices of the hyperbola given by the equation: \[ 9x^{2} - 16y^{2} + 18x + 32y - 151 = 0 \] we will follow these steps: ### Step 1: Rearranging the equation First, we rearrange the equation to group the \(x\) and \(y\) terms together: \[ 9x^{2} + 18x - 16y^{2} + 32y - 151 = 0 \] ### Step 2: Completing the square for \(x\) and \(y\) Next, we will complete the square for the \(x\) terms and the \(y\) terms. For \(x\): \[ 9(x^{2} + 2x) = 9((x + 1)^{2} - 1) = 9(x + 1)^{2} - 9 \] For \(y\): \[ -16(y^{2} - 2y) = -16((y - 1)^{2} - 1) = -16(y - 1)^{2} + 16 \] Substituting these back into the equation gives: \[ 9(x + 1)^{2} - 9 - 16(y - 1)^{2} + 16 - 151 = 0 \] Simplifying this, we have: \[ 9(x + 1)^{2} - 16(y - 1)^{2} - 144 = 0 \] ### Step 3: Setting the equation to standard form Now we can set the equation to standard form: \[ 9(x + 1)^{2} - 16(y - 1)^{2} = 144 \] Dividing through by 144 gives: \[ \frac{(x + 1)^{2}}{16} - \frac{(y - 1)^{2}}{9} = 1 \] ### Step 4: Identifying parameters From the standard form of the hyperbola: \[ \frac{(x - h)^{2}}{a^{2}} - \frac{(y - k)^{2}}{b^{2}} = 1 \] we can identify: - Center \((h, k) = (-1, 1)\) - \(a^{2} = 16 \Rightarrow a = 4\) - \(b^{2} = 9 \Rightarrow b = 3\) ### Step 5: Finding the eccentricity The eccentricity \(e\) of a hyperbola is given by: \[ e = \sqrt{1 + \frac{b^{2}}{a^{2}}} = \sqrt{1 + \frac{9}{16}} = \sqrt{\frac{25}{16}} = \frac{5}{4} \] ### Step 6: Finding the foci The foci of the hyperbola are located at: \[ (h \pm c, k) \text{ where } c = \sqrt{a^{2} + b^{2}} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Thus, the foci are: \[ (-1 \pm 5, 1) \Rightarrow (4, 1) \text{ and } (-6, 1) \] ### Step 7: Finding the directrices The equations of the directrices are given by: \[ x = h \pm \frac{a}{e} \] Calculating \(\frac{a}{e} = \frac{4}{\frac{5}{4}} = \frac{16}{5}\), we have: \[ x = -1 \pm \frac{16}{5} \] Calculating these gives: \[ x = -1 + \frac{16}{5} = \frac{11}{5} \quad \text{and} \quad x = -1 - \frac{16}{5} = -\frac{21}{5} \] ### Final Answers - **Center**: \((-1, 1)\) - **Eccentricity**: \(\frac{5}{4}\) - **Foci**: \((4, 1)\) and \((-6, 1)\) - **Directrices**: \(x = \frac{11}{5}\) and \(x = -\frac{21}{5}\)
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS )|35 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (H) (SHORT ANSWER TYPE QUESTIONS )|2 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the centre,eccentricity,foci and directrices of the hyperbola: x^(2)-y^(2)+4x=0

Find the centre,eccentricity,foci and directrices of the hyperbola: x^(2)-3y^(2)-2x=8

Find the centre,eccentricity,foci and directrices of the hyperbola: 16x^(2)-9y^(2)+32x+36y-164=0

Find the length of the transverse and conjugate axes, eccentricity, centre, foci and directrices of the hyperbola . 9x^2 - 16y^2 - 72x + 96y - 144 = 0

Find the centre, eccentricity and foci of the hyperbola, 9x^2 - 16y^2 - 18x - 64y-199 = 0

Find the length of the transverse axis, conjugate axis, eccentricity, vertices, foci and directrices of the hyperbola 9x^2 - 16y^2 = 144 .

The latus rectum of the hyperbola 9x ^(2) -16 y^(2) + 72x - 32y-16=0 is

The length of the transverse axis of the hyperbola 9x^(2)-16y^(2)-18x -32y - 151 = 0 is