Home
Class 12
MATHS
Find fog and gof, if : f(x)=|x+1|,g(x)...

Find fog and gof, if :
`f(x)=|x+1|,g(x)=2x-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(g(x)) \) and \( g(f(x)) \) for the functions \( f(x) = |x + 1| \) and \( g(x) = 2x - 1 \), we will follow these steps: ### Step 1: Find \( f(g(x)) \) 1. Start with the function \( g(x) \): \[ g(x) = 2x - 1 \] 2. Substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(2x - 1) \] 3. Now, apply the function \( f \): \[ f(2x - 1) = |(2x - 1) + 1| = |2x - 1 + 1| = |2x| \] 4. Therefore, we have: \[ f(g(x)) = |2x| \] ### Step 2: Find \( g(f(x)) \) 1. Start with the function \( f(x) \): \[ f(x) = |x + 1| \] 2. Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(|x + 1|) \] 3. Now, apply the function \( g \): \[ g(|x + 1|) = 2|x + 1| - 1 \] 4. Therefore, we have: \[ g(f(x)) = 2|x + 1| - 1 \] ### Final Answers - \( f(g(x)) = |2x| \) - \( g(f(x)) = 2|x + 1| - 1 \)
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Long Answer Type Questions (I))|9 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (c) (Short Answer Type Questions)|7 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find fog and gof if: f(x)=|x|,g(x)=sinx

Find fog and gof , if f(x)=x+1 , g(x)=2x+3

Find fog and gof, if : f(x)=x^(2),g(x)=x+1

Find fog and gof , if f(x)=|x| , g(x)=sinx

Find fog and gof , if f(x)=x+1 , g(x)=e^x

Find fog and gof, if : f(x)=4x-1,g(x)=x^(2)+2

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=x^2 , g(x)=cosx

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Find fog and gof if: f(x)=e^(x),g(x)=lnx