Home
Class 12
MATHS
Describes fog and gof, where : f(x)=sq...

Describes fog and gof, where :
`f(x)=sqrt(1-x^(2)),g(x)=logx`

Text Solution

AI Generated Solution

The correct Answer is:
To describe \( f \circ g \) and \( g \circ f \) for the functions \( f(x) = \sqrt{1 - x^2} \) and \( g(x) = \log x \), we will follow these steps: ### Step 1: Calculate \( f(g(x)) \) 1. Start with the function \( g(x) \): \[ g(x) = \log x \] 2. Now substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(\log x) \] 3. Since \( f(x) = \sqrt{1 - x^2} \), we replace \( x \) with \( \log x \): \[ f(g(x)) = \sqrt{1 - (\log x)^2} \] ### Step 2: Calculate \( g(f(x)) \) 1. Start with the function \( f(x) \): \[ f(x) = \sqrt{1 - x^2} \] 2. Now substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(\sqrt{1 - x^2}) \] 3. Since \( g(x) = \log x \), we replace \( x \) with \( \sqrt{1 - x^2} \): \[ g(f(x)) = \log(\sqrt{1 - x^2}) \] 4. This can be simplified using logarithmic properties: \[ g(f(x)) = \frac{1}{2} \log(1 - x^2) \] ### Final Answers - \( f(g(x)) = \sqrt{1 - (\log x)^2} \) - \( g(f(x)) = \frac{1}{2} \log(1 - x^2) \)
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Short Answer Type Questions)|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (d) (Long Answer Type Questions (I))|9 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE 1 (c) (Short Answer Type Questions)|7 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find fog and gof, if : f(x)=4x-1,g(x)=x^(2)+2

Find fog and gof, if : f(x)=x^(2),g(x)=x+1

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Find fog and gof , if f(x)=sin^(-1)x , g(x)=x^2

Find fog and gof if: f(x)=x^(2)+2,g(x)=1-1/(1-x),x!=1

Find fog and gof, if : f(x)=|x+1|,g(x)=2x-1

Describe fog and gof wherever is possible for the following functions (i) f(x)=sqrt(x+3),g(x)=1+x^(2) (ii) f(x)=sqrt(x),g(x)=x^(2)-1

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=x^2 , g(x)=cosx

Find fog and gof , if f(x)=x^2+2 , g(x)=1-1/(1-x)