Home
Class 12
MATHS
Use properties of determinants to evalua...

Use properties of determinants to evaluate :
`|{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ D = \begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] we will use properties of determinants step by step. ### Step 1: Add the second row to the first row. We will perform the operation \( R_1 \rightarrow R_1 + R_2 \). \[ D = \begin{vmatrix} (x+y) + z & (y+z) + x & (z+x) + y \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} x+y+z & y+z+x & z+x+y \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 2: Simplify the first row. Notice that the first row can be rewritten as: \[ D = \begin{vmatrix} x+y+z & x+y+z & x+y+z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Factor out the common term from the first row. We can factor out \( (x+y+z) \) from the first row: \[ D = (x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 4: Identify identical rows. Now, observe that the first and third rows are identical: \[ D = (x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 5: Apply the property of determinants. According to the property of determinants, if two rows (or columns) are identical, the value of the determinant is zero. Therefore: \[ D = (x+y+z) \cdot 0 = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))|48 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Without actual expansion, prove that the following determinants vanish : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Using the properties of determinants, show that: abs((x,x^2,yz),(y,y^2,xz),(z,z^2,xy))=(x−y)(y−z)(z−x)(xy+yz+zx)

What is the determinant of the matrix ({:(x,y,y+z),(z,x,z+x),(y,z,x+y):}) ?

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

The value of |[x+y, y+z, z+x] , [z,x,y] , [1,1,1]| is

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)