Home
Class 12
MATHS
Use properties of determinants to evalua...

Use properties of determinants to evaluate :
`|{:(2,3,1),(4,6,2),(1,3,2):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \( | \begin{vmatrix} 2 & 3 & 1 \\ 4 & 6 & 2 \\ 1 & 3 & 2 \end{vmatrix} | \) using properties of determinants, we can follow these steps: ### Step 1: Factor out common elements We can factor out the common element from the second row. The second row is \( (4, 6, 2) \), which can be factored as \( 2(2, 3, 1) \). Thus, we can rewrite the determinant as: \[ | \begin{vmatrix} 2 & 3 & 1 \\ 2(2 & 3 & 1) \\ 1 & 3 & 2 \end{vmatrix} | = 2 | \begin{vmatrix} 2 & 3 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{vmatrix} | \] ### Step 2: Identify identical rows Now we notice that the first row \( (2, 3, 1) \) and the second row \( (2, 3, 1) \) are identical. ### Step 3: Apply the property of determinants According to the properties of determinants, if two rows (or columns) of a determinant are identical, the value of the determinant is zero. Therefore: \[ | \begin{vmatrix} 2 & 3 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{vmatrix} | = 0 \] ### Step 4: Conclude the evaluation Thus, we have: \[ 2 | \begin{vmatrix} 2 & 3 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{vmatrix} | = 2 \cdot 0 = 0 \] Therefore, the value of the determinant \( | \begin{vmatrix} 2 & 3 & 1 \\ 4 & 6 & 2 \\ 1 & 3 & 2 \end{vmatrix} | \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))|48 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(102,18,36),(1,3,4),(17,3,6):}|

Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}|

Find minor or element 5 in the determinant Delta=|{:(2,4,3),(1,5,2),(-1,4,1):}|

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

Using properties of determinants,prove that ([(a+1)(a+2),a+2,1(a+2)(a+3),a+3,1(a+3)(a+4),a+4,1]|=-2

By using properties of determinants.Show that: det[[1,x,x^(2)x^(2),1,xx,x^(2),1]]=(1-x^(3))^(2)

Find minor and cofactors or all the elements of determinant |{:(-1,2,3),(-4,5,-2),(6,4,8):}|

Find the determinants of minors of the determinant |{:(1,2,3),(-4,3,6),(2,-7,9):}|

Find the determinants of minors and cofactors of the determinant |{:(2,3,4),(7,2,-5),(8,-1,3):}|