Home
Class 12
MATHS
Use properties of determinants to evalua...

Use properties of determinants to evaluate :
`|{:(2,3,5),(261,127,388),(20,30,50):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \( | \begin{vmatrix} 2 & 3 & 5 \\ 261 & 127 & 388 \\ 20 & 30 & 50 \end{vmatrix} | \) using properties of determinants, we can follow these steps: ### Step 1: Write the determinant We start with the given determinant: \[ D = \begin{vmatrix} 2 & 3 & 5 \\ 261 & 127 & 388 \\ 20 & 30 & 50 \end{vmatrix} \] ### Step 2: Apply the property of determinants We notice that if we add the first column (C1) to the second column (C2), we can see if it results in the third column (C3). Let's perform this operation: - New C2 = C1 + C2 - New C2 values: - First row: \( 2 + 3 = 5 \) - Second row: \( 261 + 127 = 388 \) - Third row: \( 20 + 30 = 50 \) So, we can rewrite the determinant as: \[ D = \begin{vmatrix} 2 & 5 & 5 \\ 261 & 388 & 388 \\ 20 & 50 & 50 \end{vmatrix} \] ### Step 3: Identify identical columns Now, we observe that the second and third columns (C2 and C3) are identical: \[ \begin{vmatrix} 2 & 5 & 5 \\ 261 & 388 & 388 \\ 20 & 50 & 50 \end{vmatrix} \] ### Step 4: Apply the property of identical columns According to the properties of determinants, if two columns (or rows) of a determinant are identical, the value of the determinant is zero. Therefore: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))|48 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(2,3,1),(4,6,2),(1,3,2):}|

Use properties of determinants to evaluate : |{:(102,18,36),(1,3,4),(17,3,6):}|

If f(x)=|a-10axa-1ax^(2)axa|, using properties of determinants,find the value of f(2x)-f(x)

Find the value of the determinants: |{:(2, 5),(-1,3):}|

If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|, using properties of determinants, find the value of f(2x)-f(x)dot

Using the property of determinants and without expanding, prove that |(2,7,65), (3,8,75), (5,9,86)|=0

Find the determinant of a matrix [{:(2,-3),(4," "5):}]

Using properties of determinants,prove the following: det[[1,a,a^(2)a^(2),1,aa,a^(2),1]]=(1-a^(3))^(2)

Using properties of determinants,prove that ([(a+1)(a+2),a+2,1(a+2)(a+3),a+3,1(a+3)(a+4),a+4,1]|=-2

Using properties of determinants,prove that det[[a^(2)+2a,2a+1,12a+1,a+2,13,3,1]]=(a-1)^(3)