Home
Class 12
MATHS
Without expanding the determinant, show ...

Without expanding the determinant, show that the determinant `|{:(a^(2)+10,ab,ac),(ab,b^(2)+10,bc),(ac,bc,c^(2)+10):}|` is divisible by `100`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (II))|48 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

Without expanding the determinant,show that (a+b+c) is a factor of the determinant det[[a,b,cb,c,ac,a,b]]

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(1+x))| is divisible by 1)1+x 2)(1+x)^2 3)x^2 4) x^2+1

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .