Home
Class 12
MATHS
If |{:(x,2),(8,x):}|=|{:(3,2),(9,6):}|, ...

If `|{:(x,2),(8,x):}|=|{:(3,2),(9,6):}|`, then the value of 'x' is ...........

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \begin{pmatrix} x & 2 \\ 8 & x \end{pmatrix} | = | \begin{pmatrix} 3 & 2 \\ 9 & 6 \end{pmatrix} | \), we will first calculate the determinants of both matrices. ### Step 1: Calculate the determinant of the first matrix The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ |A| = ad - bc \] For our first matrix \( \begin{pmatrix} x & 2 \\ 8 & x \end{pmatrix} \): - \( a = x \) - \( b = 2 \) - \( c = 8 \) - \( d = x \) Thus, the determinant is: \[ | \begin{pmatrix} x & 2 \\ 8 & x \end{pmatrix} | = x \cdot x - 2 \cdot 8 = x^2 - 16 \] ### Step 2: Calculate the determinant of the second matrix Now, we calculate the determinant of the second matrix \( \begin{pmatrix} 3 & 2 \\ 9 & 6 \end{pmatrix} \): - \( a = 3 \) - \( b = 2 \) - \( c = 9 \) - \( d = 6 \) The determinant is: \[ | \begin{pmatrix} 3 & 2 \\ 9 & 6 \end{pmatrix} | = 3 \cdot 6 - 2 \cdot 9 = 18 - 18 = 0 \] ### Step 3: Set the determinants equal to each other Now we set the two determinants equal to each other: \[ x^2 - 16 = 0 \] ### Step 4: Solve for \( x \) To solve for \( x \), we can rearrange the equation: \[ x^2 = 16 \] Taking the square root of both sides gives us: \[ x = 4 \quad \text{or} \quad x = -4 \] ### Final Answer Thus, the values of \( x \) are \( 4 \) and \( -4 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Revision Exercise|32 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of x if |2x+6|=-8

If |x-6|>|x^(2)-5x+9|, then value of x can be

If x=2+2^((2)/(3))+2^((1)/(3)), then the value of x^(3)-6x^(2)+6x is:

If 3 (5x-7) -4 (8x-13) =2 (9x-11)-17 , then the value of (7x-5)/(11x-9) is

If (6x-5)ln(2x+2.3)=8ln(2x+2.3) then value of x is

If ({:(11, -4), (8, -3):})({:(-x, 4), (-8, y):}) = -({:(2, 3),(6, 9):}) , then find 2x - y.

Find the value of 9x , if 5^(x-3).3^(2x-8)=225 .

if f(x)=9x^(2)+3x-6 the value of f(2) is