Home
Class 12
MATHS
Is ((1)/(a)+(1)/(b)+(1)/(c )-1) a factor...

Is `((1)/(a)+(1)/(b)+(1)/(c )-1)` a factor of `|{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|` ?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1\) is a factor of the determinant \[ D = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} \] we will follow these steps: ### Step 1: Write the determinant The given determinant is \[ D = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} \] ### Step 2: Apply row operations We will perform row operations to simplify the determinant. We can subtract the first row from the second and third rows: - \(R_2 \to R_2 - R_1\) - \(R_3 \to R_3 - R_1\) This gives us: \[ D = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 - (1 + a) & (1 + b) - 1 & 1 - 1 \\ 1 - (1 + a) & 1 - 1 & (1 + c) - 1 \end{vmatrix} \] Simplifying this results in: \[ D = \begin{vmatrix} 1 + a & 1 & 1 \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} \] ### Step 3: Expand the determinant Now we will expand the determinant along the first row: \[ D = (1 + a) \begin{vmatrix} b & 0 \\ 0 & c \end{vmatrix} - 1 \begin{vmatrix} -a & 0 \\ -a & c \end{vmatrix} + 1 \begin{vmatrix} -a & b \\ -a & 0 \end{vmatrix} \] Calculating these 2x2 determinants: 1. \(\begin{vmatrix} b & 0 \\ 0 & c \end{vmatrix} = bc\) 2. \(\begin{vmatrix} -a & 0 \\ -a & c \end{vmatrix} = -ac\) 3. \(\begin{vmatrix} -a & b \\ -a & 0 \end{vmatrix} = ab\) Substituting these back into the determinant expansion gives: \[ D = (1 + a)bc - (-ac) + ab \] ### Step 4: Simplify the expression Now simplifying: \[ D = (1 + a)bc + ac + ab \] Expanding \((1 + a)bc\): \[ D = bc + abc + ac + ab \] Rearranging gives: \[ D = abc + ab + ac + bc \] ### Step 5: Factor the expression Now, we can factor out common terms: \[ D = c(ab + b) + ab \] ### Step 6: Check if \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1\) is a factor To check if \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1\) is a factor, we can set: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 = \frac{bc + ac + ab - abc}{abc} \] For this to be a factor of \(D\), the expression \(bc + ac + ab - abc\) should equal zero when \(D\) is evaluated. Since \(D = abc + ab + ac + bc\), we can see that \(bc + ac + ab - abc\) does not equal zero in general. ### Conclusion Thus, we conclude that: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 \text{ is not a factor of } D. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Revision Exercise|32 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinants show that : ((1)/(a)+(1)/(b)+(1)/(c )+1) is a factor of : |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

Find |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}|

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

If a != 0, b!= 0, c!= 0 , then |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If a,b, and c be non-zero real numbers such that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|=0" " "then"" "1+1/a+1/b+1/c is