Home
Class 12
MATHS
Find the inverse of A=[{:(2,-6),(1,-2):}...

Find the inverse of `A=[{:(2,-6),(1,-2):}]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 2 & -6 \\ 1 & -2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = -6 \) - \( c = 1 \) - \( d = -2 \) Calculating the determinant: \[ \text{det}(A) = (2)(-2) - (1)(-6) = -4 + 6 = 2 \] ### Step 2: Find the Adjoint of A The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( d = -2 \) - \( -b = 6 \) (since \( b = -6 \)) - \( -c = -1 \) (since \( c = 1 \)) - \( a = 2 \) Thus, the adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -2 & 6 \\ -1 & 2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of A The inverse of the matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{2} \cdot \begin{pmatrix} -2 & 6 \\ -1 & 2 \end{pmatrix} \] ### Step 4: Multiply by the Scalar Now we multiply each element of the adjoint matrix by \( \frac{1}{2} \): \[ A^{-1} = \begin{pmatrix} \frac{-2}{2} & \frac{6}{2} \\ \frac{-1}{2} & \frac{2}{2} \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \] ### Final Result Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Revision Exercise|32 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

By using elementary transformations, find the inverse of : A=[(3,1),(5,2)] .

Find the inverse of ([2,-24,3])

Find the inverse of [[1,2],[6,8]]

Find the inverse of {:((3,2,6),(1,1,2),(2,2,5)):} by the adjoint method .

Find the inverse of matrix [{:(2,5),(-3,1):}]

Find the inverse of [[2,-3],[-1,2]]

Using elementary transformations, find the inverse of, [(5,2),(2,1)]

Find the inverse of [[1,2],[2,-1]]

Find additive inverse of A={:[(1,2,-1),(-4,3,-2),(1,-1,4)]:} .

Find the inverse of [[1,2,32,3,13,1,2]]