Home
Class 12
MATHS
Differentiate w.r.t. as indicated : ta...

Differentiate w.r.t. as indicated :
`tan^(-1)(x/(1+sqrt(1-x^(2))))" w.r.t. "sin(2cot^(-1)sqrt((1+x)/(1-x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( u = \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) \) with respect to \( v = \sin\left(2 \cot^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right) \), we can use the chain rule. ### Step 1: Define \( u \) and \( v \) Let: \[ u = \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) \] \[ v = \sin\left(2 \cot^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right) \] ### Step 2: Differentiate \( u \) with respect to \( x \) To differentiate \( u \), we will first simplify it. We can use the substitution \( x = \sin(\theta) \), which gives us: \[ u = \tan^{-1}\left(\frac{\sin(\theta)}{1 + \cos(\theta)}\right) \] Using the identity \( 1 + \cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) \) and \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \), we can rewrite \( u \): \[ u = \tan^{-1}\left(\frac{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{2\cos^2\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2} \] Since \( \theta = \sin^{-1}(x) \), we have: \[ u = \frac{1}{2} \sin^{-1}(x) \] Now, differentiate \( u \): \[ \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{1}{2\sqrt{1 - x^2}} \] ### Step 3: Differentiate \( v \) with respect to \( x \) Next, we need to differentiate \( v \). We start with: \[ v = \sin\left(2 \cot^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right) \] Let \( w = \cot^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right) \), then: \[ v = \sin(2w) = 2 \sin(w) \cos(w) \] Using the identity \( \cot(w) = \sqrt{\frac{1+x}{1-x}} \), we can find \( \sin(w) \) and \( \cos(w) \): \[ \sin(w) = \frac{\sqrt{1-x}}{\sqrt{2}} \quad \text{and} \quad \cos(w) = \frac{\sqrt{1+x}}{\sqrt{2}} \] Thus, \[ v = 2 \cdot \frac{\sqrt{1-x}}{\sqrt{2}} \cdot \frac{\sqrt{1+x}}{\sqrt{2}} = \frac{2\sqrt{(1-x)(1+x)}}{2} = \sqrt{1-x^2} \] Now, differentiate \( v \): \[ \frac{dv}{dx} = \frac{d}{dx}(\sqrt{1-x^2}) = \frac{-x}{\sqrt{1-x^2}} \] ### Step 4: Use the chain rule to find \( \frac{du}{dv} \) Using the chain rule: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{1}{2\sqrt{1-x^2}}}{\frac{-x}{\sqrt{1-x^2}}} = \frac{1}{2} \cdot \frac{\sqrt{1-x^2}}{-x} = -\frac{1}{2x} \] ### Final Answer Thus, the derivative of \( u \) with respect to \( v \) is: \[ \frac{du}{dv} = -\frac{1}{2x} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))|49 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t. as indicated : tan^(-1)(x/(sqrt(1-x^(2))))" w.r.t. "sin^(-1)(2xsqrt(1-x^(2))) .

Differentiate w.r.t. as indicated : cos^(-1)(1/sqrt(1+x^(2)))" w.r.t. "tan^(-1)x

Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+x^(2))-1)/(x))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/(ax))" w.r.t. "tan^(-1)ax

Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)x

Differentiate w.r.t. as indicated : tan^(-1)((3x-x^(3))/(1-3x^(2)))" w.r.t. "tan^(-1)((x)/(sqrt(1-x^(2))))

Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))" w.r.t. ""tan"^(-1)(2x)/(1-x^(2))

Differentiate w.r.t. as indicated : cos^(-1)((1-x^(2))/(1+x^(2)))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)((2x)/(1-x^(2)))

Differentiate w.r.t. as indicated : log_(10)x" w.r.t. "x^(2)

MODERN PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))
  1. Differentiate w.r.t. as indicated : cos^(-1)(1/sqrt(1+x^(2)))" w.r.t...

    Text Solution

    |

  2. Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t....

    Text Solution

    |

  3. Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t....

    Text Solution

    |

  4. Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))"...

    Text Solution

    |

  5. Differentiate cos^(-1)((1-x^(2))/(1+x^(2))) with respect to tan^(-1)((...

    Text Solution

    |

  6. Differentiate w.r.t. as indicated : tan^(-1)((3x-x^(3))/(1-3x^(2)))"...

    Text Solution

    |

  7. Differentiate w.r.t. as indicated : cos^(-1)((1-x^(2))/(1+x^(2)))" w...

    Text Solution

    |

  8. Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+a^(2)x^(2))-1)/...

    Text Solution

    |

  9. Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+x^(2))-1)/(x))"...

    Text Solution

    |

  10. Differentiate w.r.t. as indicated : tan^(-1)(x/(sqrt(1-x^(2))))" w.r...

    Text Solution

    |

  11. Differentiate w.r.t. as indicated : tan^(-1)(x/(1+sqrt(1-x^(2))))" w...

    Text Solution

    |

  12. Write the derivative of e^x wrt. sqrtx

    Text Solution

    |

  13. Differentiate w.r.t. as indicated : log(10)x" w.r.t. "x^(2)

    Text Solution

    |

  14. Differentiate w.r.t. as indicated : sinx^(2)" w.r.t. "x^(3)

    Text Solution

    |

  15. Differentiate w.r.t. as indicated : sqrt(1+x^(2))" w.r.t. "tan^(-1)x

    Text Solution

    |

  16. Prove that derivative of tan^(-1)((x)/(1+sqrt(1-x^(2))))" w.r.t. "sin^...

    Text Solution

    |

  17. Prove that the derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))" w.r.t. "...

    Text Solution

    |

  18. Differentiate tan^(- 1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-...

    Text Solution

    |

  19. Differentiate tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x...

    Text Solution

    |

  20. Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqr...

    Text Solution

    |