Home
Class 12
MATHS
Evaluate the following (i) int x log (...

Evaluate the following
(i) `int x log (1+x) dx`
(ii) `int x log^2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integrals \( \int x \log(1+x) \, dx \) and \( \int x \log^2 x \, dx \), we will use integration by parts. ### Part (i): Evaluate \( \int x \log(1+x) \, dx \) 1. **Choose \( u \) and \( dv \)**: - Let \( u = \log(1+x) \) and \( dv = x \, dx \). - Then, we differentiate and integrate: - \( du = \frac{1}{1+x} \, dx \) - \( v = \frac{x^2}{2} \) 2. **Apply Integration by Parts**: \[ \int u \, dv = uv - \int v \, du \] Substituting the values: \[ \int x \log(1+x) \, dx = \frac{x^2}{2} \log(1+x) - \int \frac{x^2}{2} \cdot \frac{1}{1+x} \, dx \] 3. **Simplify the Integral**: \[ \int \frac{x^2}{2(1+x)} \, dx = \frac{1}{2} \int \frac{x^2}{1+x} \, dx \] We can simplify \( \frac{x^2}{1+x} \) as: \[ \frac{x^2}{1+x} = x - \frac{x}{1+x} \] Therefore, \[ \int \frac{x^2}{1+x} \, dx = \int x \, dx - \int \frac{x}{1+x} \, dx \] The first integral is: \[ \int x \, dx = \frac{x^2}{2} \] The second integral can be solved by substitution: \[ \int \frac{x}{1+x} \, dx = \int \left(1 - \frac{1}{1+x}\right) \, dx = x - \log(1+x) \] 4. **Combine the Results**: Putting everything together: \[ \int x \log(1+x) \, dx = \frac{x^2}{2} \log(1+x) - \frac{1}{2} \left( \frac{x^2}{2} - (x - \log(1+x)) \right) \] Simplifying gives: \[ = \frac{x^2}{2} \log(1+x) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \log(1+x) \] ### Final Result for Part (i): \[ \int x \log(1+x) \, dx = \frac{x^2}{2} \log(1+x) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \log(1+x) + C \] --- ### Part (ii): Evaluate \( \int x \log^2 x \, dx \) 1. **Choose \( u \) and \( dv \)**: - Let \( u = \log^2 x \) and \( dv = x \, dx \). - Then, we differentiate and integrate: - \( du = 2 \log x \cdot \frac{1}{x} \, dx = \frac{2 \log x}{x} \, dx \) - \( v = \frac{x^2}{2} \) 2. **Apply Integration by Parts**: \[ \int u \, dv = uv - \int v \, du \] Substituting the values: \[ \int x \log^2 x \, dx = \frac{x^2}{2} \log^2 x - \int \frac{x^2}{2} \cdot \frac{2 \log x}{x} \, dx \] This simplifies to: \[ = \frac{x^2}{2} \log^2 x - \int x \log x \, dx \] 3. **Evaluate \( \int x \log x \, dx \)**: Using integration by parts again: - Let \( u = \log x \) and \( dv = x \, dx \). - Then, \( du = \frac{1}{x} \, dx \) and \( v = \frac{x^2}{2} \). \[ \int x \log x \, dx = \frac{x^2}{2} \log x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx \] \[ = \frac{x^2}{2} \log x - \frac{x^2}{4} \] 4. **Combine the Results**: Substituting back gives: \[ \int x \log^2 x \, dx = \frac{x^2}{2} \log^2 x - \left( \frac{x^2}{2} \log x - \frac{x^2}{4} \right) \] Simplifying: \[ = \frac{x^2}{2} \log^2 x - \frac{x^2}{2} \log x + \frac{x^2}{4} \] ### Final Result for Part (ii): \[ \int x \log^2 x \, dx = \frac{x^2}{2} \log^2 x - \frac{x^2}{2} \log x + \frac{x^2}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE (7d) LONG ANSWER TYPE QUESTION (I)|9 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

(i) int (log x)/x dx (ii) int (log x)^2/x dx

1) int x log x^(2)dx

Evaluate the following Integrals. int x (log x)^(2) dx

If a>0 and a!=1 evaluate the following integrals: int e^(x)a^(x)dx (ii) int2^((log)_(e)x)dx

int 1/(x(log x)^2)dx

Evaluate the following integrals: int(1)/(sqrt(x))dx (ii) int(1)/(x^(3))dx( iii) int a^(3)(log)_(a)x

Evaluate the following integrals. int (dx)/(x cos^(2) (log x))

(i) int (sin(log x))/x dx (ii) int log x (sin[1+(logx)^2])/x dx

Evaluate : int x log 2x dx