Home
Class 12
MATHS
int x cos 2x sin 4x dx...

`int x cos 2x sin 4x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \cos(2x) \sin(4x) \, dx \), we can follow these steps: ### Step 1: Use the Product-to-Sum Identity We can use the identity \( 2 \sin A \cos B = \sin(A + B) - \sin(A - B) \). Here, let \( A = 4x \) and \( B = 2x \). \[ 2 \sin(4x) \cos(2x) = \sin(6x) - \sin(2x) \] Thus, we can rewrite the integral: \[ \int x \cos(2x) \sin(4x) \, dx = \frac{1}{2} \int x (\sin(6x) - \sin(2x)) \, dx \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ \frac{1}{2} \int x \sin(6x) \, dx - \frac{1}{2} \int x \sin(2x) \, dx \] ### Step 3: Apply Integration by Parts For both integrals, we will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] #### For \( \int x \sin(6x) \, dx \): Let \( u = x \) and \( dv = \sin(6x) \, dx \). Then, \( du = dx \) and \( v = -\frac{1}{6} \cos(6x) \). Now applying integration by parts: \[ \int x \sin(6x) \, dx = -\frac{1}{6} x \cos(6x) - \int -\frac{1}{6} \cos(6x) \, dx \] The integral of \( \cos(6x) \) is: \[ \int \cos(6x) \, dx = \frac{1}{6} \sin(6x) \] Thus, \[ \int x \sin(6x) \, dx = -\frac{1}{6} x \cos(6x) + \frac{1}{36} \sin(6x) \] #### For \( \int x \sin(2x) \, dx \): Let \( u = x \) and \( dv = \sin(2x) \, dx \). Then, \( du = dx \) and \( v = -\frac{1}{2} \cos(2x) \). Applying integration by parts: \[ \int x \sin(2x) \, dx = -\frac{1}{2} x \cos(2x) - \int -\frac{1}{2} \cos(2x) \, dx \] The integral of \( \cos(2x) \) is: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] Thus, \[ \int x \sin(2x) \, dx = -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) \] ### Step 4: Combine Results Now we can substitute back into our original expression: \[ \int x \cos(2x) \sin(4x) \, dx = \frac{1}{2} \left( -\frac{1}{6} x \cos(6x) + \frac{1}{36} \sin(6x) \right) - \frac{1}{2} \left( -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) \right) \] This simplifies to: \[ = -\frac{1}{12} x \cos(6x) + \frac{1}{72} \sin(6x) + \frac{1}{4} x \cos(2x) - \frac{1}{8} \sin(2x) + C \] ### Final Answer Thus, the final answer is: \[ \int x \cos(2x) \sin(4x) \, dx = -\frac{1}{12} x \cos(6x) + \frac{1}{72} \sin(6x) + \frac{1}{4} x \cos(2x) - \frac{1}{8} \sin(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)((sin x cos x) /(1+sin 4x ))dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

int(cos x)/(4+sin x)dx

Evaluate: (i) int(e^(2x))/(e^(2x)-2)dx (ii) int(2cos x-3sin x)/(6cos x+4sin x)dx

(i) int 1/ (cos^4x+sin^4x)dx (ii) int 1/(sin^4x+sin^2x cos^2x+cos^4x) dx

If int cos x cos 2x cos 3x dx = A_(1)sin 2x + A_(2) sin 4x + A_(3) sin 6x + C then

int (cos x - sin x)/(1 + sin 2x) dx

int e^(x)sin x cos x cos2x cos4x.dx

Evaluate int sin x cos x cos2x cos 4x cos 8x dx