Home
Class 12
MATHS
(i) int sec^3 x dx (ii) int cosec^3 x dx...

(i) `int sec^3 x dx` (ii) `int cosec^3 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): \(\int \sec^3 x \, dx\) 1. **Rewrite the integral**: \[ \int \sec^3 x \, dx = \int \sec x \cdot \sec^2 x \, dx \] 2. **Use integration by parts**: Let \( u = \sec x \) and \( dv = \sec^2 x \, dx \). Then, \( du = \sec x \tan x \, dx \) and \( v = \tan x \). Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int \sec^3 x \, dx = \sec x \tan x - \int \tan x \sec x \tan x \, dx \] 3. **Simplify the integral**: \[ \int \sec^3 x \, dx = \sec x \tan x - \int \sec x \tan^2 x \, dx \] Recall that \(\tan^2 x = \sec^2 x - 1\): \[ \int \sec^3 x \, dx = \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx \] This expands to: \[ \int \sec^3 x \, dx = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx \] 4. **Rearranging the equation**: \[ 2 \int \sec^3 x \, dx = \sec x \tan x + \int \sec x \, dx \] Thus: \[ \int \sec^3 x \, dx = \frac{1}{2} \left( \sec x \tan x + \int \sec x \, dx \right) \] 5. **Integrate \(\int \sec x \, dx\)**: The integral of \(\sec x\) is: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] 6. **Final result**: Substituting back, we get: \[ \int \sec^3 x \, dx = \frac{1}{2} \left( \sec x \tan x + \ln |\sec x + \tan x| \right) + C \] ### Part (ii): \(\int \csc^3 x \, dx\) 1. **Rewrite the integral**: \[ \int \csc^3 x \, dx = \int \csc x \cdot \csc^2 x \, dx \] 2. **Use integration by parts**: Let \( u = \csc x \) and \( dv = \csc^2 x \, dx \). Then, \( du = -\csc x \cot x \, dx \) and \( v = -\cot x \). Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int \csc^3 x \, dx = -\csc x \cot x + \int \cot x \csc x \cot x \, dx \] 3. **Simplify the integral**: \[ \int \csc^3 x \, dx = -\csc x \cot x + \int \csc x \cot^2 x \, dx \] Recall that \(\cot^2 x = \csc^2 x - 1\): \[ \int \csc^3 x \, dx = -\csc x \cot x + \int \csc x (\csc^2 x - 1) \, dx \] This expands to: \[ \int \csc^3 x \, dx = -\csc x \cot x + \int \csc^3 x \, dx - \int \csc x \, dx \] 4. **Rearranging the equation**: \[ 2 \int \csc^3 x \, dx = -\csc x \cot x - \int \csc x \, dx \] Thus: \[ \int \csc^3 x \, dx = \frac{1}{2} \left( -\csc x \cot x - \int \csc x \, dx \right) \] 5. **Integrate \(\int \csc x \, dx\)**: The integral of \(\csc x\) is: \[ \int \csc x \, dx = -\ln |\csc x + \cot x| + C \] 6. **Final result**: Substituting back, we get: \[ \int \csc^3 x \, dx = -\frac{1}{2} \csc x \cot x + \frac{1}{2} \ln |\csc x + \cot x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int sec^3x dx

(i) int x sec^2 x dx (ii) int x cos^2 x dx

(i) int cosec x dx =____ (ii) int sec x dx= ____

(i) int x^2 e^x dx (ii) int x^2 e^(3x) dx (ii) int x^3 e^x dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx

(i) int e^x sec^2 (e^x) dx (ii) int e^x cosec^2 (e^x) dx

(i) int x^3 sin x^2 dx (ii) int x^3 cos x^2 dx

int cotx cosec^2x dx

(i) int tan^2 (2x-3) dx (ii) int sec^2 (7-4x) dx

Evaluate : (i) intcos2x\ dx (ii) inte^((5x+3))dx (iii) int sec^(2)(3x+5)dx (iv) intsin^(3)xdx