Home
Class 12
MATHS
int sin sqrtx dx...

`int sin sqrtx dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(\sqrt{x}) \, dx \), we will use substitution and integration by parts. Here are the steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Therefore, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we get: \[ \int \sin(\sqrt{x}) \, dx = \int \sin(t) \cdot 2t \, dt = 2 \int t \sin(t) \, dt \] ### Step 3: Integration by Parts Now, we will use integration by parts. Let: - \( u = t \) (thus, \( du = dt \)) - \( dv = \sin(t) \, dt \) (thus, \( v = -\cos(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int t \sin(t) \, dt = -t \cos(t) - \int -\cos(t) \, dt \] \[ = -t \cos(t) + \int \cos(t) \, dt \] \[ = -t \cos(t) + \sin(t) \] ### Step 4: Substitute Back Now, substituting back into our integral: \[ 2 \int t \sin(t) \, dt = 2 \left( -t \cos(t) + \sin(t) \right) \] \[ = -2t \cos(t) + 2\sin(t) \] ### Step 5: Replace \( t \) with \( \sqrt{x} \) Now, we replace \( t \) back with \( \sqrt{x} \): \[ = -2\sqrt{x} \cos(\sqrt{x}) + 2\sin(\sqrt{x}) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sin(\sqrt{x}) \, dx = -2\sqrt{x} \cos(\sqrt{x}) + 2\sin(\sqrt{x}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int tan^-1 sqrtx dx (ii) int sin^-1 sqrtx dx

int cos sqrtx dx =…..

What is int (sin sqrtx)/(sqrtx) dx equal to ?

Find the following integrals : int (1-x) sqrtx dx

Choose the correct answer of the given question int e^(sqrtx) dx = ___ +c

IF int_0^a sqrtx dx=2a int_0^(pi//2) sin^3 x dx, find int_a^(a+1) x dx .

Integrate : int (tan^4 sqrtx sec^2 sqrtx)/sqrtx dx.

(i) int 1/(sqrtx+x) dx (ii) int 1/(x-sqrtx) dx.