Home
Class 12
MATHS
(i) int x^2 sin x dx (ii) int x^2 sin ...

(i) `int x^2 sin x dx`
(ii) `int x^2 sin 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) Integral of \( \int x^2 \sin x \, dx \) 1. **Choose \( u \) and \( dv \)**: - Let \( u = x^2 \) and \( dv = \sin x \, dx \). - Then, differentiate \( u \) to find \( du \): \[ du = 2x \, dx \] - Integrate \( dv \) to find \( v \): \[ v = -\cos x \] 2. **Apply Integration by Parts**: - Using the formula \( \int u \, dv = uv - \int v \, du \): \[ \int x^2 \sin x \, dx = -x^2 \cos x - \int (-\cos x)(2x) \, dx \] - Simplifying gives: \[ = -x^2 \cos x + 2 \int x \cos x \, dx \] 3. **Integrate \( \int x \cos x \, dx \)**: - Again, apply integration by parts: - Let \( u = x \) and \( dv = \cos x \, dx \). - Then, \( du = dx \) and \( v = \sin x \). - Thus: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx \] - The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] - Therefore: \[ \int x \cos x \, dx = x \sin x + \cos x \] 4. **Substitute back**: - Now substitute back into the first integral: \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2(x \sin x + \cos x) \] - Simplifying gives: \[ = -x^2 \cos x + 2x \sin x + 2 \cos x + C \] ### Final Result for (i): \[ \int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + C \] --- ### (ii) Integral of \( \int x^2 \sin 2x \, dx \) 1. **Choose \( u \) and \( dv \)**: - Let \( u = x^2 \) and \( dv = \sin 2x \, dx \). - Then, differentiate \( u \) to find \( du \): \[ du = 2x \, dx \] - Integrate \( dv \) to find \( v \): \[ v = -\frac{1}{2} \cos 2x \] 2. **Apply Integration by Parts**: - Using the formula \( \int u \, dv = uv - \int v \, du \): \[ \int x^2 \sin 2x \, dx = -\frac{1}{2} x^2 \cos 2x - \int -\frac{1}{2} \cos 2x (2x) \, dx \] - Simplifying gives: \[ = -\frac{1}{2} x^2 \cos 2x + \int x \cos 2x \, dx \] 3. **Integrate \( \int x \cos 2x \, dx \)**: - Again, apply integration by parts: - Let \( u = x \) and \( dv = \cos 2x \, dx \). - Then, \( du = dx \) and \( v = \frac{1}{2} \sin 2x \). - Thus: \[ \int x \cos 2x \, dx = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x \, dx \] - The integral of \( \sin 2x \) is: \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x \] - Therefore: \[ \int x \cos 2x \, dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \] 4. **Substitute back**: - Now substitute back into the second integral: \[ \int x^2 \sin 2x \, dx = -\frac{1}{2} x^2 \cos 2x + \left( \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right) \] - Simplifying gives: \[ = -\frac{1}{2} x^2 \cos 2x + \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C \] ### Final Result for (ii): \[ \int x^2 \sin 2x \, dx = -\frac{1}{2} x^2 \cos 2x + \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x^2 sin x^3 dx

int e^x sin 2x dx

int x^2 sin^-1 x dx

(i) int x^3 sin x^2 dx (ii) int x^3 cos x^2 dx

int e^(2x) sin x dx

int x sin x^(2)dx

int2^(x)sin x dx

(1) int(x^(2)+sin x)dx

int x sin(2x^(2))dx