Home
Class 12
MATHS
int (1-x^2) sin 2x dx...

`int (1-x^2) sin 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (1 - x^2) \sin(2x) \, dx \), we can break it down into two parts: 1. \( \int \sin(2x) \, dx \) 2. \( -\int x^2 \sin(2x) \, dx \) ### Step 1: Solve \( \int \sin(2x) \, dx \) The integral of \( \sin(2x) \) can be computed using a simple substitution. \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C_1 \] ### Step 2: Solve \( -\int x^2 \sin(2x) \, dx \) using Integration by Parts For the integral \( -\int x^2 \sin(2x) \, dx \), we will use integration by parts. We choose: - \( u = x^2 \) → \( du = 2x \, dx \) - \( dv = \sin(2x) \, dx \) → \( v = -\frac{1}{2} \cos(2x) \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ -\int x^2 \sin(2x) \, dx = -\left( x^2 \cdot -\frac{1}{2} \cos(2x) - \int -\frac{1}{2} \cos(2x) \cdot 2x \, dx \right) \] This simplifies to: \[ \frac{1}{2} x^2 \cos(2x) + \int x \cos(2x) \, dx \] ### Step 3: Solve \( \int x \cos(2x) \, dx \) using Integration by Parts again For the integral \( \int x \cos(2x) \, dx \), we apply integration by parts again: - \( u = x \) → \( du = dx \) - \( dv = \cos(2x) \, dx \) → \( v = \frac{1}{2} \sin(2x) \) Using the integration by parts formula again: \[ \int x \cos(2x) \, dx = x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \] Calculating the integral \( \int \frac{1}{2} \sin(2x) \, dx \): \[ \int \frac{1}{2} \sin(2x) \, dx = -\frac{1}{4} \cos(2x) \] Putting it all together: \[ \int x \cos(2x) \, dx = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) \] ### Step 4: Combine all parts Now we can substitute back into our expression: \[ -\int x^2 \sin(2x) \, dx = \frac{1}{2} x^2 \cos(2x) + \left( \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) \right) \] Combining everything gives: \[ \int (1 - x^2) \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + \frac{1}{2} x^2 \cos(2x) + \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C \] ### Final Answer \[ \int (1 - x^2) \sin(2x) \, dx = \left( \frac{1}{2} x^2 - \frac{1}{4} \right) \cos(2x) + \frac{1}{2} x \sin(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int x^2 sin x dx (ii) int x^2 sin 2x dx

int sqrt(1-sin 2x) dx

int x^2 sin^-1 x dx

prove that: int_(0)^(1)x^2sin x dx >= (2/9)

int (1)/(sin^(2)2x )dx

(1) int(x^(2)+sin x)dx

int (cos x - sin x)/(1 + sin 2x) dx

int sqrt(1+sin 2x)dx=

int(1-cos^2x)/(sin^2x)dx=?

Evaluate: (i) int tan^(-1)((sin2x)/(1+cos2x))dx( ii) int cos^(-1)(sin x)dx