Home
Class 12
MATHS
int (tan ^-1 x^2) x dx...

`int (tan ^-1 x^2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1}(x^2) \cdot x \, dx \), we will use integration by parts and a substitution method. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \( I = \int \tan^{-1}(x^2) \cdot x \, dx \). ### Step 2: Use substitution Let \( t = x^2 \). Then, differentiate to find \( dt \): \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2}. \] Now, rewrite the integral in terms of \( t \): \[ I = \int \tan^{-1}(t) \cdot \frac{dt}{2} = \frac{1}{2} \int \tan^{-1}(t) \, dt. \] ### Step 3: Apply integration by parts For the integral \( \int \tan^{-1}(t) \, dt \), we will use integration by parts. Let: - \( u = \tan^{-1}(t) \) (thus \( du = \frac{1}{1+t^2} \, dt \)) - \( dv = dt \) (thus \( v = t \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \tan^{-1}(t) \, dt = t \tan^{-1}(t) - \int t \cdot \frac{1}{1+t^2} \, dt. \] ### Step 4: Simplify the remaining integral The remaining integral is: \[ \int \frac{t}{1+t^2} \, dt. \] This can be simplified by using the substitution \( w = 1 + t^2 \), giving \( dw = 2t \, dt \) or \( dt = \frac{dw}{2t} \): \[ \int \frac{t}{1+t^2} \, dt = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln |w| + C = \frac{1}{2} \ln(1+t^2) + C. \] ### Step 5: Combine results Now, substituting back into the integration by parts result: \[ \int \tan^{-1}(t) \, dt = t \tan^{-1}(t) - \frac{1}{2} \ln(1+t^2) + C. \] Thus, we have: \[ I = \frac{1}{2} \left( t \tan^{-1}(t) - \frac{1}{2} \ln(1+t^2) \right) + C. \] ### Step 6: Substitute back for \( t \) Recall that \( t = x^2 \): \[ I = \frac{1}{2} \left( x^2 \tan^{-1}(x^2) - \frac{1}{2} \ln(1+x^4) \right) + C. \] ### Final Answer The final result of the integral is: \[ I = \frac{1}{2} x^2 \tan^{-1}(x^2) - \frac{1}{4} \ln(1+x^4) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Find: int_0^1x (tan^-1 x)^2 dx

int(tan^-1x)/(1+x)^2dx

"int(1+tan x)^(2)dx

int (tan^(-1)x)^(2)/(1+x^2)dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

(i) int (tan^-1 x)^2/(1+x^2) dx (ii) int (e^(sin^-1 x))/sqrt(1-x^2)dx (iii) int (sec^2(2tan^-1 x))/(1+x^2) dx

int(1)/(1+tan ^(2)x)dx

int(tan^(-1)x)/(x^(2))*dx