Home
Class 12
MATHS
(i) int x^2 log x dx (ii) int (x^2+1)...

(i) `int x^2 log x dx`
(ii) `int (x^2+1) log x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals given in the question, we will use integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] where \( u \) is a function we choose to differentiate, and \( dv \) is a function we choose to integrate. ### Part (i): Evaluate \( \int x^2 \log x \, dx \) 1. **Choose \( u \) and \( dv \)**: - Let \( u = \log x \) (which we will differentiate) - Let \( dv = x^2 \, dx \) (which we will integrate) 2. **Differentiate and Integrate**: - Then, \( du = \frac{1}{x} \, dx \) - And, \( v = \int x^2 \, dx = \frac{x^3}{3} \) 3. **Apply Integration by Parts**: \[ \int x^2 \log x \, dx = uv - \int v \, du \] Substituting the values we have: \[ = \log x \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{x} \, dx \] Simplifying the integral: \[ = \log x \cdot \frac{x^3}{3} - \frac{1}{3} \int x^2 \, dx \] 4. **Evaluate the Remaining Integral**: \[ = \log x \cdot \frac{x^3}{3} - \frac{1}{3} \cdot \frac{x^3}{3} + C \] \[ = \log x \cdot \frac{x^3}{3} - \frac{x^3}{9} + C \] Thus, the final result for part (i) is: \[ \int x^2 \log x \, dx = \frac{x^3}{3} \log x - \frac{x^3}{9} + C \] ### Part (ii): Evaluate \( \int (x^2 + 1) \log x \, dx \) 1. **Split the Integral**: \[ \int (x^2 + 1) \log x \, dx = \int x^2 \log x \, dx + \int \log x \, dx \] 2. **Evaluate \( \int \log x \, dx \)** using integration by parts: - Let \( u = \log x \) and \( dv = dx \) - Then, \( du = \frac{1}{x} \, dx \) and \( v = x \) 3. **Apply Integration by Parts**: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx \] \[ = x \log x - \int 1 \, dx = x \log x - x + C \] 4. **Combine Results**: Now, substituting back into the expression for part (ii): \[ \int (x^2 + 1) \log x \, dx = \left( \frac{x^3}{3} \log x - \frac{x^3}{9} \right) + \left( x \log x - x \right) + C \] Combine the terms: \[ = \frac{x^3}{3} \log x + x \log x - \frac{x^3}{9} - x + C \] Thus, the final result for part (ii) is: \[ \int (x^2 + 1) \log x \, dx = \left( \frac{x^3}{3} + x \right) \log x - \frac{x^3}{9} - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following (i) int x log (1+x) dx (ii) int x log^2x dx

int x log x^(2)dx

int x^(x) (1+ log x) dx

Evaluate: (i) int x^(x)(1+log x)dx( ii) int x^(2x)(1+log x)dx

int_(1)^(2)x log x dx =

(i) int (log x)/x dx (ii) int (log x)^2/x dx

1) int x log x^(2)dx

int e^(x^(2)+ln x)dx

int x^(2)(log x)^(2)dx