Home
Class 12
MATHS
int sinx. Log cosx dx...

`int sinx. Log cosx dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin x \log(\cos x) \, dx \), we can use integration by parts. Let's go through the solution step by step. ### Step 1: Set up the integral Let: \[ I = \int \sin x \log(\cos x) \, dx \] ### Step 2: Use substitution We will use the substitution: \[ t = \cos x \quad \Rightarrow \quad dt = -\sin x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\sin x} \] Thus, we rewrite the integral: \[ I = \int \sin x \log(\cos x) \, dx = \int \log(t) (-dt) = -\int \log(t) \, dt \] ### Step 3: Integrate using integration by parts Now, we will apply integration by parts. Let: - \( u = \log(t) \) \(\Rightarrow du = \frac{1}{t} dt\) - \( dv = dt \) \(\Rightarrow v = t\) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ -\int \log(t) \, dt = -\left( t \log(t) - \int t \cdot \frac{1}{t} \, dt \right) \] This simplifies to: \[ = -\left( t \log(t) - \int dt \right) = -\left( t \log(t) - t \right) = -t \log(t) + t \] ### Step 4: Substitute back for \( t \) Now substituting back \( t = \cos x \): \[ I = -\left( \cos x \log(\cos x) - \cos x \right) = -\cos x \log(\cos x) + \cos x \] ### Step 5: Final result Thus, the integral evaluates to: \[ I = \cos x (1 - \log(\cos x)) + C \] where \( C \) is the constant of integration. ### Summary of the solution: \[ \int \sin x \log(\cos x) \, dx = \cos x (1 - \log(\cos x)) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^(pi/2)sinx.log cosx dx

int e^sinx cosx dx

Evaluate : int ( sinx cosx ) dx

Evaluate : int sqrt(1-sinx)cosx dx

int (dx)/(sinx cosx)=

int(sinx-cosx)^(2)dx=

int(1)/(sinx-cosx)dx=

Evaluate: int1/(sinx+cosx)\ dx

int3/(sinx+cosx)dx

int tanx dx=-log |cosx|+c