Home
Class 12
MATHS
(i) int x sin^-1 x dx (ii) int x cos^-...

(i) `int x sin^-1 x dx`
(ii) `int x cos^-1 x dx`
(iii) `int x tan^-1 x dx`
(iv) `int x cot^-1 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) \( \int x \sin^{-1} x \, dx \) 1. **Integration by Parts**: We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let \( u = \sin^{-1} x \) and \( dv = x \, dx \). Then, we find \( du \) and \( v \): \[ du = \frac{1}{\sqrt{1 - x^2}} \, dx, \quad v = \frac{x^2}{2} \] 2. **Apply the formula**: \[ \int x \sin^{-1} x \, dx = \sin^{-1} x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{\sqrt{1 - x^2}} \, dx \] Simplifying gives: \[ = \frac{x^2}{2} \sin^{-1} x - \frac{1}{2} \int \frac{x^2}{\sqrt{1 - x^2}} \, dx \] 3. **Simplify the integral**: To simplify \( \int \frac{x^2}{\sqrt{1 - x^2}} \, dx \), we can rewrite it: \[ \int \frac{x^2}{\sqrt{1 - x^2}} \, dx = \int \frac{1 - (1 - x^2)}{\sqrt{1 - x^2}} \, dx = \int \frac{1}{\sqrt{1 - x^2}} \, dx - \int \sqrt{1 - x^2} \, dx \] 4. **Integrate**: - The first integral \( \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x \). - The second integral \( \int \sqrt{1 - x^2} \, dx \) can be solved using the substitution \( x = \sin \theta \). 5. **Final result**: Combining the results gives: \[ \int x \sin^{-1} x \, dx = \frac{x^2}{2} \sin^{-1} x - \frac{1}{2} \left( \sin^{-1} x - \frac{x}{2} \sqrt{1 - x^2} \right) + C \] ### (ii) \( \int x \cos^{-1} x \, dx \) 1. **Integration by Parts**: Let \( u = \cos^{-1} x \) and \( dv = x \, dx \). Then, we find \( du \) and \( v \): \[ du = -\frac{1}{\sqrt{1 - x^2}} \, dx, \quad v = \frac{x^2}{2} \] 2. **Apply the formula**: \[ \int x \cos^{-1} x \, dx = \cos^{-1} x \cdot \frac{x^2}{2} + \int \frac{x^2}{2\sqrt{1 - x^2}} \, dx \] 3. **Simplify the integral**: Similar to the previous integral, we can rewrite: \[ \int \frac{x^2}{\sqrt{1 - x^2}} \, dx = \int \frac{1}{\sqrt{1 - x^2}} \, dx - \int \sqrt{1 - x^2} \, dx \] 4. **Integrate**: - The first integral \( \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x \). - The second integral \( \int \sqrt{1 - x^2} \, dx \) can be solved similarly. 5. **Final result**: Combining gives: \[ \int x \cos^{-1} x \, dx = \frac{x^2}{2} \cos^{-1} x + \frac{1}{2} \left( \sin^{-1} x - \frac{x}{2} \sqrt{1 - x^2} \right) + C \] ### (iii) \( \int x \tan^{-1} x \, dx \) 1. **Integration by Parts**: Let \( u = \tan^{-1} x \) and \( dv = x \, dx \). Then, we find \( du \) and \( v \): \[ du = \frac{1}{1 + x^2} \, dx, \quad v = \frac{x^2}{2} \] 2. **Apply the formula**: \[ \int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \int \frac{x^2}{2(1 + x^2)} \, dx \] 3. **Simplify the integral**: Rewrite the integral: \[ \int \frac{x^2}{1 + x^2} \, dx = \int (1 - \frac{1}{1 + x^2}) \, dx = \int dx - \int \frac{1}{1 + x^2} \, dx \] 4. **Integrate**: - The first integral \( \int dx = x \). - The second integral \( \int \frac{1}{1 + x^2} \, dx = \tan^{-1} x \). 5. **Final result**: Combining gives: \[ \int x \tan^{-1} x \, dx = \frac{x^2}{2} \tan^{-1} x - \frac{x}{2} + \frac{1}{2} \tan^{-1} x + C \] ### (iv) \( \int x \cot^{-1} x \, dx \) 1. **Integration by Parts**: Let \( u = \cot^{-1} x \) and \( dv = x \, dx \). Then, we find \( du \) and \( v \): \[ du = -\frac{1}{1 + x^2} \, dx, \quad v = \frac{x^2}{2} \] 2. **Apply the formula**: \[ \int x \cot^{-1} x \, dx = \cot^{-1} x \cdot \frac{x^2}{2} + \int \frac{x^2}{2(1 + x^2)} \, dx \] 3. **Simplify the integral**: Similar to the previous integral, we can rewrite: \[ \int \frac{x^2}{1 + x^2} \, dx = \int (1 - \frac{1}{1 + x^2}) \, dx \] 4. **Integrate**: - The first integral \( \int dx = x \). - The second integral \( \int \frac{1}{1 + x^2} \, dx = \tan^{-1} x \). 5. **Final result**: Combining gives: \[ \int x \cot^{-1} x \, dx = \frac{x^2}{2} \cot^{-1} x + \frac{x}{2} - \frac{1}{2} \tan^{-1} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int sin^-1 x dx (ii) int cos^-1 x dx (iii) int cot^-1 x dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx

int 1/(sin x cos x) dx

int (1) / (sin x cos x) dx

(i) int_2^3 1/x dx (ii) int_1^2 1/x^2 dx (iii) int_1^e (dx)/x (iv) int_-1^1 (x+1) dx

(i) int tan dx=log |secx|+c (ii) int cot x dx=log |sin x|+c (iii) int tan x dx=log |sin x| +c (iv) int tan x dx =-log cos x +c

int(1-sin x+cos x)dx