Home
Class 12
MATHS
(i) int (x cos^-1 x)/sqrt(1-x)^2 dx (ii...

(i) `int (x cos^-1 x)/sqrt(1-x)^2 dx` (ii) `int (x tan^-1x)/(1+x^2)^(3//2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the two integrals step by step. ### Part (i): Evaluate the integral \[ I = \int \frac{x \cos^{-1}(x)}{\sqrt{1 - x^2}} \, dx. \] **Step 1: Substitution** Let \( t = \cos^{-1}(x) \). Then, we have: \[ x = \cos(t) \quad \text{and} \quad dx = -\sin(t) \, dt. \] Also, note that: \[ \sqrt{1 - x^2} = \sqrt{1 - \cos^2(t)} = \sin(t). \] Substituting these into the integral gives: \[ I = \int \frac{\cos(t) t}{\sin(t)} (-\sin(t)) \, dt = -\int t \cos(t) \, dt. \] **Step 2: Integration by Parts** Using integration by parts, where we let: - \( u = t \) and \( dv = \cos(t) \, dt \), - then \( du = dt \) and \( v = \sin(t) \). Applying the integration by parts formula: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ I = -\left( t \sin(t) - \int \sin(t) \, dt \right). \] Calculating the integral of \( \sin(t) \): \[ \int \sin(t) \, dt = -\cos(t). \] Thus, \[ I = -\left( t \sin(t) + \cos(t) \right) + C. \] **Step 3: Back Substitution** Now, substituting back \( t = \cos^{-1}(x) \): \[ I = -\left( \cos^{-1}(x) \sin(\cos^{-1}(x)) + \cos(\cos^{-1}(x)) \right) + C. \] Since \( \sin(\cos^{-1}(x)) = \sqrt{1 - x^2} \) and \( \cos(\cos^{-1}(x)) = x \): \[ I = -\left( \cos^{-1}(x) \sqrt{1 - x^2} + x \right) + C. \] ### Final Result for Part (i): \[ I = -\cos^{-1}(x) \sqrt{1 - x^2} - x + C. \] --- ### Part (ii): Evaluate the integral \[ J = \int \frac{x \tan^{-1}(x)}{(1 + x^2)^{3/2}} \, dx. \] **Step 1: Substitution** Let \( u = \tan^{-1}(x) \). Then, we have: \[ x = \tan(u) \quad \text{and} \quad dx = \sec^2(u) \, du. \] Also, note that: \[ 1 + x^2 = 1 + \tan^2(u) = \sec^2(u) \quad \text{thus} \quad (1 + x^2)^{3/2} = \sec^3(u). \] Substituting these into the integral gives: \[ J = \int \frac{\tan(u) u}{\sec^3(u)} \sec^2(u) \, du = \int u \sin(u) \, du. \] **Step 2: Integration by Parts** Using integration by parts again: - Let \( u = u \) and \( dv = \sin(u) \, du \), - then \( du = du \) and \( v = -\cos(u) \). Applying the integration by parts formula: \[ J = -u \cos(u) + \int \cos(u) \, du. \] Calculating the integral of \( \cos(u) \): \[ \int \cos(u) \, du = \sin(u). \] Thus, \[ J = -u \cos(u) + \sin(u) + C. \] **Step 3: Back Substitution** Now, substituting back \( u = \tan^{-1}(x) \): \[ J = -\tan^{-1}(x) \cos(\tan^{-1}(x)) + \sin(\tan^{-1}(x)) + C. \] Since \( \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1 + x^2}} \) and \( \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1 + x^2}} \): \[ J = -\tan^{-1}(x) \cdot \frac{1}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{1 + x^2}} + C. \] ### Final Result for Part (ii): \[ J = -\frac{\tan^{-1}(x)}{\sqrt{1 + x^2}} + \frac{x}{\sqrt{1 + x^2}} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int (tan^-1 x)^2/(1+x^2) dx (ii) int (e^(sin^-1 x))/sqrt(1-x^2)dx (iii) int (sec^2(2tan^-1 x))/(1+x^2) dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

(i) int(1)/(sqrt(1-x^(2)).cos^(-1) x)dx (ii) int (sin(tan^(-1)x))/(1+x^(2))dx

(i) int 2^x/sqrt(1-4^x) dx (ii) int sqrt(e^x-1) dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(x^(2))/(sqrt(1-x))dx (ii) int x(1-x)^(23)dx

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx

inte^(tan^-1x)(1+x/(1+x^2))dx