Home
Class 12
MATHS
int x^2 sin^-1 x dx...

`int x^2 sin^-1 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 \sin^{-1}(x) \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \sin^{-1}(x) \) (which we will differentiate) - \( dv = x^2 \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = \frac{1}{\sqrt{1 - x^2}} \, dx \] 2. Integrate \( dv \): \[ v = \int x^2 \, dx = \frac{x^3}{3} \] ### Step 3: Apply the Integration by Parts Formula Now we can apply the integration by parts formula: \[ \int x^2 \sin^{-1}(x) \, dx = uv - \int v \, du \] Substituting the values we found: \[ = \sin^{-1}(x) \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{1}{\sqrt{1 - x^2}} \, dx \] ### Step 4: Simplify the Integral This gives us: \[ = \frac{x^3}{3} \sin^{-1}(x) - \frac{1}{3} \int \frac{x^3}{\sqrt{1 - x^2}} \, dx \] ### Step 5: Solve the Remaining Integral To solve \( \int \frac{x^3}{\sqrt{1 - x^2}} \, dx \), we can use the substitution: Let \( t = 1 - x^2 \), then \( dt = -2x \, dx \) or \( dx = -\frac{dt}{2x} \). From \( t = 1 - x^2 \), we have \( x^2 = 1 - t \) and \( x^3 = x \cdot x^2 = x(1 - t) \). Substituting \( x = \sqrt{1 - t} \): \[ \int \frac{x^3}{\sqrt{1 - x^2}} \, dx = \int \frac{\sqrt{1 - t}(1 - t)}{\sqrt{t}} \cdot \left(-\frac{dt}{2\sqrt{1 - t}}\right) \] This simplifies to: \[ -\frac{1}{2} \int \frac{(1 - t)}{\sqrt{t}} \, dt \] ### Step 6: Integrate Now, we can split the integral: \[ -\frac{1}{2} \left( \int t^{-1/2} \, dt - \int t^{1/2} \, dt \right) \] Calculating these integrals: \[ -\frac{1}{2} \left( 2\sqrt{t} - \frac{2}{3} t^{3/2} \right) = -\sqrt{t} + \frac{1}{3} t^{3/2} \] ### Step 7: Substitute Back Substituting back \( t = 1 - x^2 \): \[ -\sqrt{1 - x^2} + \frac{1}{3} (1 - x^2)^{3/2} \] ### Final Result Putting everything together: \[ \int x^2 \sin^{-1}(x) \, dx = \frac{x^3}{3} \sin^{-1}(x) + \frac{1}{6} \left( -\sqrt{1 - x^2} + \frac{1}{3} (1 - x^2)^{3/2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

(i) int x^2 sin x dx (ii) int x^2 sin 2x dx

int (sin^-1x)/x^2 dx

int1/x^2sin (1/x)dx

(1) int(x^(2)+sin x)dx

If l_(1)=int sin^(-1)x dx and l_(2) =int sin^(-1)sqrt(1-x^(2))dx , then

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

int sin^(2)(sin^(-1)x)dx

int (sin ^ (- 1) x) / (x ^ (2)) dx