Home
Class 12
MATHS
(i) int2^3 1/x dx (ii) int1^2 1/x^2 dx...

(i) `int_2^3 1/x dx`
(ii) `int_1^2 1/x^2 dx`
(iii) `int_1^e (dx)/x`
(iv) `int_-1^1 (x+1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step: ### (i) \(\int_2^3 \frac{1}{x} \, dx\) 1. **Identify the integral**: We need to integrate \(\frac{1}{x}\) from 2 to 3. 2. **Find the antiderivative**: The antiderivative of \(\frac{1}{x}\) is \(\ln |x|\). 3. **Apply the limits**: We evaluate \(\ln |x|\) from 2 to 3: \[ \int_2^3 \frac{1}{x} \, dx = \left[ \ln x \right]_2^3 = \ln 3 - \ln 2 \] 4. **Use logarithmic properties**: We can simplify this using the property \(\ln a - \ln b = \ln \frac{a}{b}\): \[ \ln 3 - \ln 2 = \ln \frac{3}{2} \] ### Final answer for (i): \[ \int_2^3 \frac{1}{x} \, dx = \ln \frac{3}{2} \] --- ### (ii) \(\int_1^2 \frac{1}{x^2} \, dx\) 1. **Identify the integral**: We need to integrate \(\frac{1}{x^2}\) from 1 to 2. 2. **Find the antiderivative**: The antiderivative of \(\frac{1}{x^2}\) is \(-\frac{1}{x}\). 3. **Apply the limits**: We evaluate \(-\frac{1}{x}\) from 1 to 2: \[ \int_1^2 \frac{1}{x^2} \, dx = \left[-\frac{1}{x}\right]_1^2 = -\frac{1}{2} - (-1) = -\frac{1}{2} + 1 = \frac{1}{2} \] ### Final answer for (ii): \[ \int_1^2 \frac{1}{x^2} \, dx = \frac{1}{2} \] --- ### (iii) \(\int_1^e \frac{1}{x} \, dx\) 1. **Identify the integral**: We need to integrate \(\frac{1}{x}\) from 1 to \(e\). 2. **Find the antiderivative**: The antiderivative of \(\frac{1}{x}\) is \(\ln |x|\). 3. **Apply the limits**: We evaluate \(\ln x\) from 1 to \(e\): \[ \int_1^e \frac{1}{x} \, dx = \left[ \ln x \right]_1^e = \ln e - \ln 1 \] 4. **Simplify**: Since \(\ln e = 1\) and \(\ln 1 = 0\): \[ \ln e - \ln 1 = 1 - 0 = 1 \] ### Final answer for (iii): \[ \int_1^e \frac{1}{x} \, dx = 1 \] --- ### (iv) \(\int_{-1}^1 (x + 1) \, dx\) 1. **Identify the integral**: We need to integrate \(x + 1\) from -1 to 1. 2. **Find the antiderivative**: The antiderivative of \(x + 1\) is \(\frac{x^2}{2} + x\). 3. **Apply the limits**: We evaluate \(\frac{x^2}{2} + x\) from -1 to 1: \[ \int_{-1}^1 (x + 1) \, dx = \left[ \frac{x^2}{2} + x \right]_{-1}^1 \] 4. **Calculate at the limits**: - At \(x = 1\): \[ \frac{1^2}{2} + 1 = \frac{1}{2} + 1 = \frac{3}{2} \] - At \(x = -1\): \[ \frac{(-1)^2}{2} + (-1) = \frac{1}{2} - 1 = -\frac{1}{2} \] 5. **Combine the results**: \[ \frac{3}{2} - \left(-\frac{1}{2}\right) = \frac{3}{2} + \frac{1}{2} = \frac{4}{2} = 2 \] ### Final answer for (iv): \[ \int_{-1}^1 (x + 1) \, dx = 2 \] --- ### Summary of Answers: 1. \(\int_2^3 \frac{1}{x} \, dx = \ln \frac{3}{2}\) 2. \(\int_1^2 \frac{1}{x^2} \, dx = \frac{1}{2}\) 3. \(\int_1^e \frac{1}{x} \, dx = 1\) 4. \(\int_{-1}^1 (x + 1) \, dx = 2\) ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int 1/(1-x^2) dx (ii) int 1/(x^2-9) dx

(i) int 1/(1+x^2/4) dx (ii) int 1/((x+2)^2+1) dx (iii) int (dx)/(4+9x^2)

(i) int_4^5 1dx (ii) int_-1^2 x dx (iii) int_0^4 x^(1//2) dx (iv) int_0^4 x^(3//2) dx (v) int_0^8 x^(5//3) dx

(i) int_1^4(x^2-x)dx (ii) int_0^2(x^2+1) dx

(i) int_0^1 (dx)/(3x-4) (ii) int_1^3 (dx)/(7-2x)

(i) x^(2/3) (ii) int_1^2 dx/x

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

(i) int sin^-1 x dx (ii) int cos^-1 x dx (iii) int cot^-1 x dx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx