Home
Class 12
MATHS
int2^4 (x^2-1)dx...

`int_2^4 (x^2-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_2^4 (x^2 - 1) \, dx\), we will follow these steps: ### Step 1: Break down the integral We can split the integral into two separate integrals: \[ \int_2^4 (x^2 - 1) \, dx = \int_2^4 x^2 \, dx - \int_2^4 1 \, dx \] ### Step 2: Calculate \(\int_2^4 x^2 \, dx\) Using the power rule for integration, we have: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] For \(n = 2\): \[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \] Now, we evaluate this from 2 to 4: \[ \int_2^4 x^2 \, dx = \left[ \frac{x^3}{3} \right]_2^4 = \frac{4^3}{3} - \frac{2^3}{3} = \frac{64}{3} - \frac{8}{3} = \frac{64 - 8}{3} = \frac{56}{3} \] ### Step 3: Calculate \(\int_2^4 1 \, dx\) The integral of 1 over an interval is simply the length of the interval: \[ \int_2^4 1 \, dx = [x]_2^4 = 4 - 2 = 2 \] ### Step 4: Combine the results Now, we can combine the results from Step 2 and Step 3: \[ \int_2^4 (x^2 - 1) \, dx = \frac{56}{3} - 2 \] To subtract 2, we convert it into a fraction: \[ 2 = \frac{6}{3} \] Thus, \[ \int_2^4 (x^2 - 1) \, dx = \frac{56}{3} - \frac{6}{3} = \frac{56 - 6}{3} = \frac{50}{3} \] ### Final Answer The value of the integral \(\int_2^4 (x^2 - 1) \, dx\) is: \[ \frac{50}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_1^4 (x^2-x)dx

Evaluate : int_2^4 x/(x^2+1)dx

Evaluate as limit of sums: int_2^4 (2x-1)dx

Evaluate the following integral: int_2^4x/(x^2+1)dx

Evaluate each of the following integral: int_2^4x/(x^2+1)dx

int_2^4 (6x^2-1)/sqrt(2x^3-x-2)dx

(i) int_0^4 (2x+3) dx (ii) int_0^4 (2x-1)dx

(i) int_1^4(x^2-x)dx (ii) int_0^2(x^2+1) dx

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx

int_2^4(x^4+3x^2-1)/x^2dx=?