Home
Class 12
MATHS
(i) int0^1 (dx)/sqrt(1-x^2) (ii) int0^...

(i) `int_0^1 (dx)/sqrt(1-x^2)`
(ii) `int_0^1 (dx)/sqrt(1+x^2)`
(iii) a `int_1^sqrt3 (dx)/(1+x^2)`
b `int_0^1 (dx)/(1+x^2)`
(iv) `int_0^(2//3) (dx)/(4+9x^2)`
(v) `int_0^1 x/(x^2+1)dx`
(vi) `int_2^3 x/(x^2+1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) \(\int_0^1 \frac{dx}{\sqrt{1-x^2}}\) 1. **Recognize the Integral**: The integral \(\int \frac{dx}{\sqrt{1-x^2}}\) is a standard integral that evaluates to \(\sin^{-1}(x) + C\). 2. **Evaluate the Definite Integral**: \[ \int_0^1 \frac{dx}{\sqrt{1-x^2}} = \left[\sin^{-1}(x)\right]_0^1 = \sin^{-1}(1) - \sin^{-1}(0) \] 3. **Substitute the Limits**: \[ = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### (ii) \(\int_0^1 \frac{dx}{\sqrt{1+x^2}}\) 1. **Recognize the Integral**: The integral \(\int \frac{dx}{\sqrt{1+x^2}}\) evaluates to \(\ln(x + \sqrt{1+x^2}) + C\). 2. **Evaluate the Definite Integral**: \[ \int_0^1 \frac{dx}{\sqrt{1+x^2}} = \left[\ln(x + \sqrt{1+x^2})\right]_0^1 \] 3. **Substitute the Limits**: \[ = \ln(1 + \sqrt{2}) - \ln(0 + 1) = \ln(1 + \sqrt{2}) - 0 = \ln(1 + \sqrt{2}) \] ### (iii) (a) \(\int_1^{\sqrt{3}} \frac{dx}{1+x^2}\) 1. **Recognize the Integral**: The integral \(\int \frac{dx}{1+x^2}\) evaluates to \(\tan^{-1}(x) + C\). 2. **Evaluate the Definite Integral**: \[ \int_1^{\sqrt{3}} \frac{dx}{1+x^2} = \left[\tan^{-1}(x)\right]_1^{\sqrt{3}} \] 3. **Substitute the Limits**: \[ = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1) = \frac{\pi}{3} - \frac{\pi}{4} \] 4. **Simplify**: \[ = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12} \] ### (iii) (b) \(\int_0^1 \frac{dx}{1+x^2}\) 1. **Evaluate the Definite Integral**: \[ \int_0^1 \frac{dx}{1+x^2} = \left[\tan^{-1}(x)\right]_0^1 \] 2. **Substitute the Limits**: \[ = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### (iv) \(\int_0^{\frac{2}{3}} \frac{dx}{4+9x^2}\) 1. **Rewrite the Integral**: \[ = \int_0^{\frac{2}{3}} \frac{dx}{4(1 + \frac{9}{4}x^2)} = \frac{1}{4} \int_0^{\frac{2}{3}} \frac{dx}{1 + \left(\frac{3}{2}x\right)^2} \] 2. **Recognize the Integral**: The integral \(\int \frac{dx}{1 + k^2 x^2}\) evaluates to \(\frac{1}{k} \tan^{-1}(kx) + C\). 3. **Evaluate**: \[ = \frac{1}{4} \cdot \frac{2}{3} \tan^{-1}\left(\frac{3}{2}x\right) \bigg|_0^{\frac{2}{3}} = \frac{1}{6} \left[\tan^{-1}(1) - \tan^{-1}(0)\right] \] 4. **Substitute the Limits**: \[ = \frac{1}{6} \left(\frac{\pi}{4} - 0\right) = \frac{\pi}{24} \] ### (v) \(\int_0^1 \frac{x}{x^2+1}dx\) 1. **Rewrite the Integral**: \[ = \frac{1}{2} \int_0^1 \frac{2x}{x^2+1}dx \] 2. **Recognize the Integral**: The integral \(\int \frac{2x}{x^2+1}dx\) evaluates to \(\ln(x^2 + 1) + C\). 3. **Evaluate**: \[ = \frac{1}{2} \left[\ln(x^2 + 1)\right]_0^1 = \frac{1}{2} \left(\ln(2) - \ln(1)\right) = \frac{1}{2} \ln(2) \] ### (vi) \(\int_2^3 \frac{x}{x^2+1}dx\) 1. **Rewrite the Integral**: \[ = \frac{1}{2} \int_2^3 \frac{2x}{x^2+1}dx \] 2. **Evaluate**: \[ = \frac{1}{2} \left[\ln(x^2 + 1)\right]_2^3 = \frac{1}{2} \left(\ln(10) - \ln(5)\right) \] 3. **Simplify**: \[ = \frac{1}{2} \ln\left(\frac{10}{5}\right) = \frac{1}{2} \ln(2) \] ### Summary of Results: 1. (i) \(\frac{\pi}{2}\) 2. (ii) \(\ln(1+\sqrt{2})\) 3. (iii) (a) \(\frac{\pi}{12}\), (b) \(\frac{\pi}{4}\) 4. (iv) \(\frac{\pi}{24}\) 5. (v) \(\frac{1}{2} \ln(2)\) 6. (vi) \(\frac{1}{2} \ln(2)\)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^1 x/sqrt(1-x^2)dx

int_0^1 x/sqrt(1+x^2)dx

int_0^1(dx)/(sqrt(3-2x))

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx

(i) int (dx)/sqrt(x(1-2x)) (ii) int (dx)/sqrt(2x-x^2)

(i) int_0^1 (dx)/(3x-4) (ii) int_1^3 (dx)/(7-2x)

int_0^1(x^2)/(1+x^2)dx=?

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx