Home
Class 12
MATHS
(i) int0^1 (dx)/(3x-4) (ii) int1^3 (dx)/...

(i) `int_0^1 (dx)/(3x-4)` (ii) `int_1^3 (dx)/(7-2x)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): Evaluate \( I_1 = \int_0^1 \frac{dx}{3x - 4} \) 1. **Substitution**: Let \( t = 3x - 4 \). Then, differentiate both sides: \[ dt = 3dx \quad \Rightarrow \quad dx = \frac{dt}{3} \] 2. **Change the limits**: When \( x = 0 \): \[ t = 3(0) - 4 = -4 \] When \( x = 1 \): \[ t = 3(1) - 4 = -1 \] So the new limits for \( t \) are from \(-4\) to \(-1\). 3. **Substituting in the integral**: \[ I_1 = \int_{-4}^{-1} \frac{1}{t} \cdot \frac{dt}{3} = \frac{1}{3} \int_{-4}^{-1} \frac{dt}{t} \] 4. **Integrate**: \[ I_1 = \frac{1}{3} \left[ \ln |t| \right]_{-4}^{-1} = \frac{1}{3} \left( \ln |-1| - \ln |-4| \right) \] Since \( \ln |-1| = 0 \): \[ I_1 = \frac{1}{3} (0 - \ln 4) = -\frac{1}{3} \ln 4 \] ### Part (ii): Evaluate \( I_2 = \int_1^3 \frac{dx}{7 - 2x} \) 1. **Substitution**: Let \( t = 7 - 2x \). Then, differentiate: \[ dt = -2dx \quad \Rightarrow \quad dx = -\frac{dt}{2} \] 2. **Change the limits**: When \( x = 1 \): \[ t = 7 - 2(1) = 5 \] When \( x = 3 \): \[ t = 7 - 2(3) = 1 \] So the new limits for \( t \) are from \( 5 \) to \( 1 \). 3. **Substituting in the integral**: \[ I_2 = \int_{5}^{1} \frac{1}{t} \left(-\frac{dt}{2}\right) = -\frac{1}{2} \int_{5}^{1} \frac{dt}{t} \] 4. **Integrate**: \[ I_2 = -\frac{1}{2} \left[ \ln |t| \right]_{5}^{1} = -\frac{1}{2} \left( \ln |1| - \ln |5| \right) \] Since \( \ln |1| = 0 \): \[ I_2 = -\frac{1}{2} (0 - \ln 5) = \frac{1}{2} \ln 5 \] ### Final Answers: - \( I_1 = -\frac{1}{3} \ln 4 \) - \( I_2 = \frac{1}{2} \ln 5 \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx

int_(0)^(1)(dx)/(3x+2)

(i) int_1^2 (dx)/((x+1)(x+2)) (ii) int_1^2 (x+3)/(x(x+2) dx

(i) int_0^4 (2x+3) dx (ii) int_0^4 (2x-1)dx

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

int_0^1 |4x-3|dx

(i) x^(2/3) (ii) int_1^2 dx/x

int_0^1(1)/(2x-3) dx .

int_(0)^(1)(dx)/((2x-3))

(i) int (3x^2)/(x^6+1) dx (ii) int (3x)/(1+2x^4) dx