Home
Class 12
MATHS
(i) int0^(pi//4) tan x dx (ii) int(pi//4...

(i) `int_0^(pi//4) tan x dx` (ii) `int_(pi//4)^(pi//2) cot x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals given in the question, we will break them down step by step. ### Part (i): Evaluate \( \int_0^{\frac{\pi}{4}} \tan x \, dx \) 1. **Rewrite the integral**: \[ \tan x = \frac{\sin x}{\cos x} \] So, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \, dx \] 2. **Substitution**: Let \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). When \( x = 0 \), \( t = \cos(0) = 1 \). When \( x = \frac{\pi}{4} \), \( t = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). 3. **Change the limits and substitute**: The integral becomes: \[ I = \int_{1}^{\frac{1}{\sqrt{2}}} \frac{-1}{t} \, dt \] This simplifies to: \[ I = -\int_{1}^{\frac{1}{\sqrt{2}}} \frac{1}{t} \, dt \] 4. **Integrate**: The integral of \( \frac{1}{t} \) is \( \log |t| \): \[ I = -\left[ \log |t| \right]_{1}^{\frac{1}{\sqrt{2}}} \] Evaluating this gives: \[ I = -\left( \log\left(\frac{1}{\sqrt{2}}\right) - \log(1) \right) = -\left( -\frac{1}{2} \log(2) \right) = \frac{1}{2} \log(2) \] ### Part (ii): Evaluate \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \, dx \) 1. **Rewrite the integral**: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the integral as: \[ J = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} \, dx \] 2. **Substitution**: Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). When \( x = \frac{\pi}{4} \), \( t = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). When \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \). 3. **Change the limits and substitute**: The integral becomes: \[ J = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{t} \, dt \] 4. **Integrate**: The integral of \( \frac{1}{t} \) is \( \log |t| \): \[ J = \left[ \log |t| \right]_{\frac{1}{\sqrt{2}}}^{1} \] Evaluating this gives: \[ J = \log(1) - \log\left(\frac{1}{\sqrt{2}}\right) = 0 + \frac{1}{2} \log(2) = \frac{1}{2} \log(2) \] ### Final Results - For part (i): \[ \int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \log(2) \] - For part (ii): \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \, dx = \frac{1}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(pi//2)cot^(2)x dx =

(i) int_0^(pi//4) sec x dx (ii) int_(pi//6)^(pi//4) cosec x dx

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_{0}^(pi/4)|tan x|dx

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_(pi//4)^(pi//3)(tan x + cot x) dx =

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to