Home
Class 12
MATHS
(i) int0^(pi//4) sec x dx (ii) int(pi/...

(i) `int_0^(pi//4) sec x dx`
(ii) `int_(pi//6)^(pi//4) cosec x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### (i) Evaluate \( \int_0^{\frac{\pi}{4}} \sec x \, dx \) 1. **Substitution**: We know that \( \sec x = \frac{1}{\cos x} \). To integrate \( \sec x \), we can use the identity: \[ \sec x = \frac{1}{\cos x} = \frac{\sec x + \tan x}{\sec x + \tan x} \cdot \sec x \] This allows us to rewrite the integral: \[ \int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \, dx \] 2. **Differentiation**: Let \( t = \sec x + \tan x \). Then, differentiating both sides gives: \[ dt = (\sec x \tan x + \sec^2 x) \, dx \] Thus, \( dx = \frac{dt}{\sec x \tan x + \sec^2 x} \). 3. **Change of Limits**: When \( x = 0 \): \[ t = \sec(0) + \tan(0) = 1 + 0 = 1 \] When \( x = \frac{\pi}{4} \): \[ t = \sec\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right) = \sqrt{2} + 1 \] 4. **Substituting Back**: The integral now becomes: \[ \int_1^{1+\sqrt{2}} \frac{1}{t} \, dt \] 5. **Integrating**: The integral of \( \frac{1}{t} \) is: \[ \ln |t| \Big|_1^{1+\sqrt{2}} = \ln(1+\sqrt{2}) - \ln(1) = \ln(1+\sqrt{2}) \] Thus, the result for the first integral is: \[ \int_0^{\frac{\pi}{4}} \sec x \, dx = \ln(1+\sqrt{2}) \] ### (ii) Evaluate \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x \, dx \) 1. **Substitution**: We know that \( \csc x = \frac{1}{\sin x} \). To integrate \( \csc x \), we can use the identity: \[ \csc x = \frac{\csc x (\csc x + \cot x)}{\csc x + \cot x} \cdot \csc x \] 2. **Differentiation**: Let \( t = \csc x + \cot x \). Then, differentiating gives: \[ dt = (-\csc x \cot x - \csc^2 x) \, dx \] Thus, \( dx = \frac{dt}{-\csc x \cot x - \csc^2 x} \). 3. **Change of Limits**: When \( x = \frac{\pi}{6} \): \[ t = \csc\left(\frac{\pi}{6}\right) + \cot\left(\frac{\pi}{6}\right) = 2 + \sqrt{3} \] When \( x = \frac{\pi}{4} \): \[ t = \csc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) = \sqrt{2} + 1 \] 4. **Substituting Back**: The integral now becomes: \[ -\int_{2+\sqrt{3}}^{\sqrt{2}+1} \frac{1}{t} \, dt \] 5. **Integrating**: The integral of \( \frac{1}{t} \) is: \[ -\left( \ln |t| \Big|_{2+\sqrt{3}}^{\sqrt{2}+1} \right) = -\left( \ln(\sqrt{2}+1) - \ln(2+\sqrt{3}) \right) \] This simplifies to: \[ \ln(2+\sqrt{3}) - \ln(\sqrt{2}+1) \] Using the property of logarithms: \[ = \ln\left(\frac{2+\sqrt{3}}{\sqrt{2}+1}\right) \] Thus, the result for the second integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x \, dx = \ln\left(\frac{2+\sqrt{3}}{\sqrt{2}+1}\right) \] ### Summary of Results: 1. \( \int_0^{\frac{\pi}{4}} \sec x \, dx = \ln(1+\sqrt{2}) \) 2. \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc x \, dx = \ln\left(\frac{2+\sqrt{3}}{\sqrt{2}+1}\right) \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//4)cosec 2x dx=

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_(0)^(pi//4) tan x dx

int_(0)^(pi//4) sec^(4) x" dx =

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx (ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_{0}^(pi/4)|tan x|dx