Home
Class 12
MATHS
int0^1 3^x dx...

`int_0^1 3^x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 3^x \, dx \), we will follow these steps: ### Step 1: Identify the integral We need to evaluate the integral: \[ I = \int_0^1 3^x \, dx \] ### Step 2: Use the formula for the integral of an exponential function The integral of \( a^x \) is given by the formula: \[ \int a^x \, dx = \frac{a^x}{\ln a} + C \] where \( C \) is the constant of integration and \( a > 0 \), \( a \neq 1 \). ### Step 3: Apply the formula In our case, \( a = 3 \). Therefore, we can write: \[ I = \int 3^x \, dx = \frac{3^x}{\ln 3} + C \] ### Step 4: Evaluate the definite integral from 0 to 1 Now we need to evaluate this from 0 to 1: \[ I = \left[ \frac{3^x}{\ln 3} \right]_0^1 \] This means we will substitute the upper limit (1) and the lower limit (0) into the expression. ### Step 5: Substitute the upper limit Substituting \( x = 1 \): \[ \frac{3^1}{\ln 3} = \frac{3}{\ln 3} \] ### Step 6: Substitute the lower limit Substituting \( x = 0 \): \[ \frac{3^0}{\ln 3} = \frac{1}{\ln 3} \] ### Step 7: Calculate the definite integral Now, we subtract the lower limit from the upper limit: \[ I = \frac{3}{\ln 3} - \frac{1}{\ln 3} = \frac{3 - 1}{\ln 3} = \frac{2}{\ln 3} \] ### Final Result Thus, the value of the integral is: \[ \int_0^1 3^x \, dx = \frac{2}{\ln 3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1 |3x-1| dx

int_0^1 |4x-3|dx

Evaluate the following: int_0^3 |3x-1|dx

(i) int_0^4 (x+1)dx (ii) int_0^5 (x+1)dx (iii) int_0^3 (x+4) dx

int_0^1|5x-3|dx

Evaluate the following integral: int_0^3|3x-1|dx

int_(0)^(1)[3x]dx

int_(0)^(1) |5x -3 | dx =?

Evaluate the following: int_0^1(x^3dx)/(1+x^4)