Home
Class 12
MATHS
(i) int0^(pi/2) sin^2 x dx (ii) int0^(...

(i) `int_0^(pi/2) sin^2 x dx`
(ii) `int_0^(pi//2) cos^2 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals \( \int_0^{\frac{\pi}{2}} \sin^2 x \, dx \) and \( \int_0^{\frac{\pi}{2}} \cos^2 x \, dx \), we will use trigonometric identities to simplify the integrands. ### Step-by-Step Solution **(i) Calculate \( \int_0^{\frac{\pi}{2}} \sin^2 x \, dx \)** 1. **Use the identity for \( \sin^2 x \)**: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Therefore, we can rewrite the integral as: \[ \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \int_0^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} \, dx \] 2. **Split the integral**: \[ = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \cos 2x) \, dx = \frac{1}{2} \left( \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \cos 2x \, dx \right) \] 3. **Calculate the first integral**: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] 4. **Calculate the second integral**: \[ \int_0^{\frac{\pi}{2}} \cos 2x \, dx = \left[ \frac{\sin 2x}{2} \right]_0^{\frac{\pi}{2}} = \frac{\sin \pi}{2} - \frac{\sin 0}{2} = 0 - 0 = 0 \] 5. **Combine the results**: \[ \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4} \] **(ii) Calculate \( \int_0^{\frac{\pi}{2}} \cos^2 x \, dx \)** 1. **Use the identity for \( \cos^2 x \)**: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Therefore, we can rewrite the integral as: \[ \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} \, dx \] 2. **Split the integral**: \[ = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2x) \, dx = \frac{1}{2} \left( \int_0^{\frac{\pi}{2}} 1 \, dx + \int_0^{\frac{\pi}{2}} \cos 2x \, dx \right) \] 3. **Calculate the first integral** (already done): \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] 4. **Calculate the second integral** (already done): \[ \int_0^{\frac{\pi}{2}} \cos 2x \, dx = 0 \] 5. **Combine the results**: \[ \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{1}{2} \left( \frac{\pi}{2} + 0 \right) = \frac{\pi}{4} \] ### Final Answers - \( \int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4} \) - \( \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{4} \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

int_0^(pi//2) x^2 cos 2x dx

Evaluate (i) int_0^(pi//4) sin x cos x dx (ii) int_0^(pi//2) (1 + cos x)^(1//2) dx (iii) int_0^(pi//2) (1 + sin x)^(1//2) dx (iv) int_0^(pi//4) (1 -cos 2x)^(1//2)dx

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2))-k(q_(1)q_(2))/(x^(2))dx (iii) int_(u)^(v)Mvdv (iv) int_(0)^(oo)x^(-1//2)dx (v) int_(0)^(pi//2)sin x dx (vi) int_(0)^(pi//2)cos x dx (vii) int_(-pi//2)^(pi//2) cos x dx

int_0^(pi/2) sin x sin 2x dx

int_0^(2pi)(sin2x)dx

int_0^(2pi)(sin2x)dx