Home
Class 12
MATHS
int0^(pi//2) sin^3 x dx...

`int_0^(pi//2) sin^3 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin^3 x \, dx \), we can use a trigonometric identity to simplify the integration process. ### Step 1: Use the identity for \(\sin^3 x\) We know that: \[ \sin^3 x = \frac{3 \sin x - \sin(3x)}{4} \] Thus, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \sin^3 x \, dx = \int_0^{\frac{\pi}{2}} \frac{3 \sin x - \sin(3x)}{4} \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \frac{1}{4} \int_0^{\frac{\pi}{2}} 3 \sin x \, dx - \frac{1}{4} \int_0^{\frac{\pi}{2}} \sin(3x) \, dx \] ### Step 3: Calculate the first integral The first integral is: \[ \int_0^{\frac{\pi}{2}} 3 \sin x \, dx = 3 \left[-\cos x\right]_0^{\frac{\pi}{2}} = 3 \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] = 3 \left[0 + 1\right] = 3 \] ### Step 4: Calculate the second integral The second integral is: \[ \int_0^{\frac{\pi}{2}} \sin(3x) \, dx = \left[-\frac{1}{3} \cos(3x)\right]_0^{\frac{\pi}{2}} = -\frac{1}{3} \left[\cos\left(\frac{3\pi}{2}\right) - \cos(0)\right] = -\frac{1}{3} \left[0 - 1\right] = \frac{1}{3} \] ### Step 5: Substitute back into the integral Now substituting back into the expression for \( I \): \[ I = \frac{1}{4} \left(3 - \frac{1}{3}\right) = \frac{1}{4} \left(\frac{9}{3} - \frac{1}{3}\right) = \frac{1}{4} \left(\frac{8}{3}\right) = \frac{2}{3} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_0^(pi/2) sin^6x dx

Evaluate int_0^(pi/2) sin^7x dx

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

Evaluate : int_(0)^(pi//2) sin^(3) c cos x dx

int_(0)^(pi//2) sin ^(3) x cos^(3) x" "dx =

What is int_0^(pi//2) (sin^3 x)/(sin^3x+cos^3x) dx

The value of int_(0)^(2) 3x^(2)dx+int_(0)^(pi//2) sin x dx is :-

int_(0)^(pi/4) sin^(3) x dx=(2)/(3)