Home
Class 12
MATHS
(i) int0^pi (sin^2 x/2- cos^2 x/2) dx ...

(i) `int_0^pi (sin^2 x/2- cos^2 x/2) dx`
(ii) `int_0^(pi//2) (sin^2x)/(1+cosx)^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integrals step by step, we will break down each part of the question. ### Part (i): Evaluate the integral \[ I = \int_0^\pi \left( \frac{\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}}{1} \right) dx \] 1. **Using the property of integrals**: We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] Here, let \( a = \pi \). Thus, we can write: \[ I = \int_0^\pi \left( \sin^2 \frac{\pi - x}{2} - \cos^2 \frac{\pi - x}{2} \right) dx \] 2. **Simplifying the integrand**: We know that: \[ \sin\left(\frac{\pi - x}{2}\right) = \cos\left(\frac{x}{2}\right) \quad \text{and} \quad \cos\left(\frac{\pi - x}{2}\right) = \sin\left(\frac{x}{2}\right) \] Therefore, we can rewrite the integral as: \[ I = \int_0^\pi \left( \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right) dx \] 3. **Adding the two integrals**: Now, we can add the two expressions for \( I \): \[ 2I = \int_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} + \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right) dx \] This simplifies to: \[ 2I = \int_0^\pi 0 \, dx = 0 \] Thus, we find: \[ I = 0 \] ### Part (ii): Evaluate the integral \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{(1 + \cos x)^2} \, dx \] 1. **Using the identity for \(\sin^2 x\)**: We can rewrite \(\sin^2 x\) as: \[ \sin^2 x = 1 - \cos^2 x \] Therefore, we can express the integral as: \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{1 - \cos^2 x}{(1 + \cos x)^2} \, dx \] 2. **Splitting the integral**: This can be split into two parts: \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{1}{(1 + \cos x)^2} \, dx - \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{(1 + \cos x)^2} \, dx \] 3. **Evaluating the first integral**: The first integral can be computed using the substitution \( u = \tan\left(\frac{x}{2}\right) \): \[ \cos x = \frac{1 - u^2}{1 + u^2}, \quad dx = \frac{2}{1 + u^2} du \] The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( u = 0 \) to \( u = 1 \). 4. **Final evaluation**: After evaluating both parts and simplifying, we find: \[ I_2 = 2 - \frac{\pi}{2} \] ### Final Answers: 1. For part (i): \( I = 0 \) 2. For part (ii): \( I_2 = 2 - \frac{\pi}{2} \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

int_0^(2pi)(sin2x)dx

int_0^(2pi)(sin2x)dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) x sin x cos x dx

Evaluate (i) int_0^(pi//4) sin x cos x dx (ii) int_0^(pi//2) (1 + cos x)^(1//2) dx (iii) int_0^(pi//2) (1 + sin x)^(1//2) dx (iv) int_0^(pi//4) (1 -cos 2x)^(1//2)dx