Home
Class 12
MATHS
int0^1 (x e^x +sin((pix)/4)) dx...

`int_0^1 (x e^x +sin((pix)/4)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \left( x e^x + \sin\left(\frac{\pi x}{4}\right) \right) dx \), we can break it into two parts: \[ I = \int_0^1 x e^x \, dx + \int_0^1 \sin\left(\frac{\pi x}{4}\right) \, dx \] ### Step 1: Solve \( \int_0^1 x e^x \, dx \) We will use integration by parts for this integral. Let: - \( u = x \) (then \( du = dx \)) - \( dv = e^x \, dx \) (then \( v = e^x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int_0^1 x e^x \, dx = \left[ x e^x \right]_0^1 - \int_0^1 e^x \, dx \] Calculating the boundary term: \[ \left[ x e^x \right]_0^1 = 1 \cdot e^1 - 0 \cdot e^0 = e - 0 = e \] Now calculate the second integral: \[ \int_0^1 e^x \, dx = \left[ e^x \right]_0^1 = e - 1 \] Putting it all together: \[ \int_0^1 x e^x \, dx = e - (e - 1) = 1 \] ### Step 2: Solve \( \int_0^1 \sin\left(\frac{\pi x}{4}\right) \, dx \) We will use substitution for this integral. Let: - \( u = \frac{\pi x}{4} \) (then \( du = \frac{\pi}{4} dx \) or \( dx = \frac{4}{\pi} du \)) Change the limits: - When \( x = 0 \), \( u = 0 \) - When \( x = 1 \), \( u = \frac{\pi}{4} \) Now we can rewrite the integral: \[ \int_0^1 \sin\left(\frac{\pi x}{4}\right) \, dx = \int_0^{\frac{\pi}{4}} \sin(u) \cdot \frac{4}{\pi} \, du = \frac{4}{\pi} \int_0^{\frac{\pi}{4}} \sin(u) \, du \] Calculating the integral: \[ \int \sin(u) \, du = -\cos(u) \] Thus: \[ \int_0^{\frac{\pi}{4}} \sin(u) \, du = \left[-\cos(u)\right]_0^{\frac{\pi}{4}} = -\cos\left(\frac{\pi}{4}\right) + \cos(0) = -\frac{1}{\sqrt{2}} + 1 = 1 - \frac{1}{\sqrt{2}} \] Putting it all together: \[ \int_0^1 \sin\left(\frac{\pi x}{4}\right) \, dx = \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{2}}\right) \] ### Final Calculation Now combine both parts: \[ I = \int_0^1 x e^x \, dx + \int_0^1 \sin\left(\frac{\pi x}{4}\right) \, dx = 1 + \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{2}}\right) \] ### Final Result Thus, the final result for the integral is: \[ I = 1 + \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{2}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(xe^(x)+sin(pi(x)/(4)))dx

The value of the integral int_(0)^(1) log sin ((pix)/(2))dx is

int_(0)^(1)(xe^(x)+(sin)(pi x)/(4))dx

int e^x sin(e^x) dx=

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

int_0^2 x^3[1+cos((pix)/2)]dx , where [x] denotes the integral part of x , is equal to (A) 1/2 (B) 1/4 (C) 0 (D) none of these

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

Evaluate: int_0^1 (dx)/(e^x+e^(-x))