Home
Class 12
MATHS
int2^3 (dx)/(x^2-1)...

`int_2^3 (dx)/(x^2-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_2^3 \frac{dx}{x^2 - 1} \), we can follow these steps: ### Step 1: Rewrite the Denominator The expression \( x^2 - 1 \) can be factored as \( (x - 1)(x + 1) \). Thus, we have: \[ I = \int_2^3 \frac{dx}{(x - 1)(x + 1)} \] ### Step 2: Use Partial Fraction Decomposition We can express \( \frac{1}{(x - 1)(x + 1)} \) using partial fractions: \[ \frac{1}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} \] Multiplying through by the denominator \( (x - 1)(x + 1) \) gives: \[ 1 = A(x + 1) + B(x - 1) \] Expanding this, we have: \[ 1 = Ax + A + Bx - B = (A + B)x + (A - B) \] Setting coefficients equal, we get the system: 1. \( A + B = 0 \) 2. \( A - B = 1 \) ### Step 3: Solve for A and B From the first equation \( A + B = 0 \), we can express \( B = -A \). Substituting into the second equation: \[ A - (-A) = 1 \implies 2A = 1 \implies A = \frac{1}{2} \] Then substituting back to find \( B \): \[ B = -\frac{1}{2} \] ### Step 4: Rewrite the Integral Now we can rewrite the integral: \[ I = \int_2^3 \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) dx \] This simplifies to: \[ I = \frac{1}{2} \int_2^3 \frac{1}{x - 1} dx - \frac{1}{2} \int_2^3 \frac{1}{x + 1} dx \] ### Step 5: Integrate Each Term The integrals can be computed as follows: \[ \int \frac{1}{x - 1} dx = \log |x - 1| + C \] \[ \int \frac{1}{x + 1} dx = \log |x + 1| + C \] Thus: \[ I = \frac{1}{2} \left[ \log |x - 1| \right]_2^3 - \frac{1}{2} \left[ \log |x + 1| \right]_2^3 \] ### Step 6: Evaluate the Limits Calculating the first integral: \[ \left[ \log |x - 1| \right]_2^3 = \log |3 - 1| - \log |2 - 1| = \log 2 - \log 1 = \log 2 \] Calculating the second integral: \[ \left[ \log |x + 1| \right]_2^3 = \log |3 + 1| - \log |2 + 1| = \log 4 - \log 3 \] ### Step 7: Combine the Results Now substituting back: \[ I = \frac{1}{2} (\log 2) - \frac{1}{2} (\log 4 - \log 3) \] This simplifies to: \[ I = \frac{1}{2} \log 2 - \frac{1}{2} (\log 4 - \log 3) = \frac{1}{2} \log 2 - \frac{1}{2} \log 4 + \frac{1}{2} \log 3 \] Using properties of logarithms: \[ I = \frac{1}{2} (\log 2 + \log 3 - \log 4) = \frac{1}{2} \log \left( \frac{2 \cdot 3}{4} \right) = \frac{1}{2} \log \left( \frac{3}{2} \right) \] ### Final Result Thus, the final answer is: \[ I = \frac{1}{2} \log \left( \frac{3}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_2^3(dx)/(1-x^2)

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

int_2^3(dx)/(x(x^3-1))=?

int_2^3 x/(x^2+1)dx

find- int_2^3(2x)/(1+x^2)dx

Evaluate : int _2 ^3 dx/(2x+1)