Home
Class 12
MATHS
(i) int1^3 (3x)/(9x^2-1) dx (ii) int2^...

(i) `int_1^3 (3x)/(9x^2-1) dx`
(ii) `int_2^3 x/(x^2+1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): Evaluate the integral \( \int_1^3 \frac{3x}{9x^2 - 1} \, dx \) **Step 1: Substitution** Let \( y = 3x \). Then, we have: \[ dy = 3 \, dx \quad \Rightarrow \quad dx = \frac{dy}{3} \] Also, we need to change the limits of integration: - When \( x = 1 \), \( y = 3 \cdot 1 = 3 \) - When \( x = 3 \), \( y = 3 \cdot 3 = 9 \) **Step 2: Rewrite the integral** Substituting \( y \) and \( dx \) into the integral, we get: \[ \int_1^3 \frac{3x}{9x^2 - 1} \, dx = \int_3^9 \frac{y}{9\left(\frac{y}{3}\right)^2 - 1} \cdot \frac{dy}{3} \] This simplifies to: \[ = \frac{1}{3} \int_3^9 \frac{y}{9 \cdot \frac{y^2}{9} - 1} \, dy = \frac{1}{3} \int_3^9 \frac{y}{y^2 - 1} \, dy \] **Step 3: Simplify the integral** Now, we can simplify the integral: \[ = \frac{1}{3} \int_3^9 \frac{y}{(y-1)(y+1)} \, dy \] **Step 4: Partial fraction decomposition** We can express \( \frac{y}{(y-1)(y+1)} \) as: \[ \frac{y}{(y-1)(y+1)} = \frac{A}{y-1} + \frac{B}{y+1} \] Multiplying through by the denominator gives: \[ y = A(y+1) + B(y-1) \] Setting \( y = 1 \) gives \( 1 = 2A \) so \( A = \frac{1}{2} \). Setting \( y = -1 \) gives \( -1 = -2B \) so \( B = \frac{1}{2} \). Thus, \[ \frac{y}{(y-1)(y+1)} = \frac{1/2}{y-1} + \frac{1/2}{y+1} \] **Step 5: Integrate** Now we can integrate: \[ \frac{1}{3} \int_3^9 \left( \frac{1/2}{y-1} + \frac{1/2}{y+1} \right) dy = \frac{1}{6} \left[ \ln|y-1| + \ln|y+1| \right]_3^9 \] **Step 6: Evaluate the limits** Calculating the limits: \[ = \frac{1}{6} \left[ \ln(8) + \ln(10) - (\ln(2) + \ln(4)) \right] \] \[ = \frac{1}{6} \left[ \ln(80) - \ln(8) \right] = \frac{1}{6} \ln(10) \] ### Part (ii): Evaluate the integral \( \int_2^3 \frac{x}{x^2 + 1} \, dx \) **Step 1: Simplify the integral** We can factor out a constant: \[ \int_2^3 \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \int_2^3 \frac{2x}{x^2 + 1} \, dx \] **Step 2: Recognize the derivative** The derivative of \( x^2 + 1 \) is \( 2x \), so we can integrate directly: \[ = \frac{1}{2} \ln|x^2 + 1| \bigg|_2^3 \] **Step 3: Evaluate the limits** Calculating the limits: \[ = \frac{1}{2} \left[ \ln(10) - \ln(5) \right] = \frac{1}{2} \ln\left(\frac{10}{5}\right) = \frac{1}{2} \ln(2) \] ### Final Answers: (i) \( \frac{1}{6} \ln(10) \) (ii) \( \frac{1}{2} \ln(2) \) ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_2^3 (dx)/(x^2-1)

int_0^3 (3x+1)/(x^2+9) dx=

int_(1)^(2)(3x)/(9x^(2)-1)dx

int_1^3(x^2)/(x^3+1)dx=?

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx

int_2^3(dx)/(1-x^2)

(i) int (3x^2)/(x^6+1) dx (ii) int (3x)/(1+2x^4) dx

int(3x+1)/(2x^(2)+x-1)dx

(i) int_1^2 (dx)/((x+1)(x+2)) (ii) int_1^2 (x+3)/(x(x+2) dx

(i) int_0^1 (dx)/(3x-4) (ii) int_1^3 (dx)/(7-2x)