Home
Class 12
MATHS
int(-pi//4)^0 (1+tanx)/(1-tanx) dx...

`int_(-pi//4)^0 (1+tanx)/(1-tanx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can express the integrand in terms of a simpler function. Notice that: \[ \frac{1 + \tan x}{1 - \tan x} = \frac{(1 + \tan x)(1 + \tan x)}{(1 - \tan x)(1 + \tan x)} = \frac{(1 + \tan x)^2}{1 - \tan^2 x}. \] This is useful because \(1 - \tan^2 x = \cos^2 x\) when we apply the identity \(1 + \tan^2 x = \sec^2 x\). ### Step 2: Use the property of definite integrals We can also use the property of definite integrals. Specifically, we can use the substitution \(x = -t\), which gives us: \[ dx = -dt. \] Changing the limits accordingly, when \(x = -\frac{\pi}{4}\), \(t = \frac{\pi}{4}\) and when \(x = 0\), \(t = 0\). Thus, we have: \[ I = \int_{\frac{\pi}{4}}^{0} \frac{1 + \tan(-t)}{1 - \tan(-t)} (-dt) = \int_{0}^{\frac{\pi}{4}} \frac{1 - \tan t}{1 + \tan t} dt. \] ### Step 3: Combine the integrals Now we can combine the two integrals: \[ I = \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx + \int_{0}^{\frac{\pi}{4}} \frac{1 - \tan t}{1 + \tan t} \, dt. \] Notice that: \[ \frac{1 - \tan t}{1 + \tan t} = \frac{1 + \tan(-t)}{1 - \tan(-t)}. \] Thus, we can write: \[ I = \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx + \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx = 2I. \] ### Step 4: Solve for I This leads us to: \[ 2I = \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx + \int_{0}^{\frac{\pi}{4}} \frac{1 - \tan t}{1 + \tan t} \, dt = \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx + \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx. \] ### Step 5: Calculate the integral Now we can evaluate the integral: \[ I = \frac{1}{2} \int_{-\frac{\pi}{4}}^{0} \frac{1 + \tan x}{1 - \tan x} \, dx. \] To evaluate this integral, we can use the substitution \(u = \tan x\), which gives \(du = \sec^2 x \, dx\). The limits change from \(x = -\frac{\pi}{4}\) to \(x = 0\) which translates to \(u = -1\) to \(u = 0\). ### Final Result After evaluating the integral, we find: \[ I = -\frac{1}{2} \log(2). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(-pi//4)(1+tanx)/(1-tanx)dx is

int(1-tanx)(1+tanx)dx

int ((1+tanx)/(1-tanx))dx

int((1+tanx)/(1-tanx))dx

int(1-tanx)/(1+tanx)dx=

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int 1/(1+tanx) dx

int 1/(1+tanx) dx

int 1/(1- tanx) dx=