Home
Class 12
MATHS
int0^(pi//2) x^2 cos 2x dx...

`int_0^(pi//2) x^2 cos 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} x^2 \cos(2x) \, dx \), we will use the property of definite integrals and integration by parts. ### Step 1: Use the property of definite integrals We know that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For our case, let \( a = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_0^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right)^2 \cos\left(2\left(\frac{\pi}{2} - x\right)\right) \, dx \] ### Step 2: Simplify the expression Now, we simplify the expression: \[ \left(\frac{\pi}{2} - x\right)^2 = \frac{\pi^2}{4} - \pi x + x^2 \] And, \[ \cos\left(2\left(\frac{\pi}{2} - x\right)\right) = \cos(\pi - 2x) = -\cos(2x) \] Thus, we can write: \[ I = \int_0^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - \pi x + x^2\right)(-\cos(2x)) \, dx \] This becomes: \[ I = -\int_0^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - \pi x + x^2\right) \cos(2x) \, dx \] ### Step 3: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} x^2 \cos(2x) \, dx \) (original) 2. \( I = -\int_0^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - \pi x + x^2\right) \cos(2x) \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} x^2 \cos(2x) \, dx - \left(\frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} \cos(2x) \, dx - \pi \int_0^{\frac{\pi}{2}} x \cos(2x) \, dx + \int_0^{\frac{\pi}{2}} x^2 \cos(2x) \, dx\right) \] ### Step 4: Evaluate the integrals Now we need to evaluate the integrals: 1. \( \int_0^{\frac{\pi}{2}} \cos(2x) \, dx = \left[\frac{1}{2} \sin(2x)\right]_0^{\frac{\pi}{2}} = \frac{1}{2} \) 2. Let \( J = \int_0^{\frac{\pi}{2}} x \cos(2x) \, dx \) ### Step 5: Use integration by parts for \( J \) Let \( u = x \) and \( dv = \cos(2x) \, dx \). Then, \[ du = dx, \quad v = \frac{1}{2} \sin(2x) \] Using integration by parts: \[ J = \left[ x \cdot \frac{1}{2} \sin(2x) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{1}{2} \sin(2x) \, dx \] The first term evaluates to \( 0 \) and the second term evaluates to: \[ -\frac{1}{2} \left[-\frac{1}{2} \cos(2x)\right]_0^{\frac{\pi}{2}} = -\frac{1}{2} \left(-\frac{1}{2} - 1\right) = \frac{3}{4} \] Thus, \( J = \frac{3}{4} \). ### Step 6: Substitute back into the equation for \( I \) Now substituting back: \[ 2I = I - \left(\frac{\pi^2}{4} \cdot \frac{1}{2} - \pi \cdot \frac{3}{4} + I\right) \] This simplifies to: \[ 2I = I - \left(\frac{\pi^2}{8} - \frac{3\pi}{4} + I\right) \] Rearranging gives: \[ I = \frac{\pi^2}{8} - \frac{3\pi}{4} \] Thus, the final answer is: \[ I = \frac{\pi^2}{8} - \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^(pi//2)x^2cos2x\ dx

int_(0)^(pi//2) x^(2) cos x dx

(i) int_0^(pi//2) cos x dx (ii) int_(-pi//2)^(pi//2) cos x dx (iii) int_0^(pi//2) cos 2x dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate: int_0^(pi//2)cos^2x\ dx

Evaluate (i) int_0^(pi//4) sin x cos x dx (ii) int_0^(pi//2) (1 + cos x)^(1//2) dx (iii) int_0^(pi//2) (1 + sin x)^(1//2) dx (iv) int_0^(pi//4) (1 -cos 2x)^(1//2)dx

Find the Definite Integrals : int_0^(pi/2) sin^2x cos^3x dx

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then